Local symmetry groups for arbitrary wavevectors

Emanuele Maggio, Andriy Smolyanyuk, Jan M Tomczak
{"title":"Local symmetry groups for arbitrary wavevectors","authors":"Emanuele Maggio, Andriy Smolyanyuk, Jan M Tomczak","doi":"10.1088/1751-8121/ad0011","DOIUrl":null,"url":null,"abstract":"We present an algorithm for the determination of the local symmetry group for arbitrary k-points in 3D Brillouin zones. First, we test our implementation against tabulated results available for standard high-symmetry points (given by universal fractional coordinates). Then, to showcase the general applicability of our methodology, we produce the irreducible representations for the ``non-universal high-symmetry\" points, first reported by Setyawan and Curtarolo [Comput. Mater. Sci. 49, 299 (2010)]. The present method can be regarded as a first step for the determination of elementary band decompositions and symmetry-enforced constraints in crystalline topological materials.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/ad0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present an algorithm for the determination of the local symmetry group for arbitrary k-points in 3D Brillouin zones. First, we test our implementation against tabulated results available for standard high-symmetry points (given by universal fractional coordinates). Then, to showcase the general applicability of our methodology, we produce the irreducible representations for the ``non-universal high-symmetry" points, first reported by Setyawan and Curtarolo [Comput. Mater. Sci. 49, 299 (2010)]. The present method can be regarded as a first step for the determination of elementary band decompositions and symmetry-enforced constraints in crystalline topological materials.
任意波向量的局部对称群
提出了一种确定三维布里渊区域中任意k点局部对称群的算法。首先,我们根据标准高对称性点(由通用分数坐标给出)可用的表格结果测试我们的实现。然后,为了展示我们的方法的一般适用性,我们产生了“非普遍高对称性”点的不可约表示,首先由Setyawan和Curtarolo [Comput]报道。板牙。科学通报,2012,(3):1 - 4。本方法可视为确定晶体拓扑材料中基本能带分解和对称强制约束的第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信