{"title":"On the convex characterisation of the set of unital quantum channels","authors":"Constantino Rodriguez Ramos, Colin M. Wilmott","doi":"10.1088/1751-8121/acfddb","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we consider the convex structure of the set of unital quantum channels. To do this, we introduce a novel framework to construct and characterise different families of low-rank unital quantum maps. In this framework, unital quantum maps are represented as a set of complex parameters on which we impose a set of constraints. The different families of unital maps are obtained by mapping those parameters into the operator representation of a quantum map. For these families, we also introduce a scalar measuring their distance to the set of mixed-unitary maps. We consider the particular case of qutrit channels which is the smallest set of maps for which the existence of non-unitary extremal maps is known. In this setting, we show how our framework generalises the description of well-known maps such as the antisymmetric Werner–Holevo map but also novel families of qutrit maps.","PeriodicalId":16785,"journal":{"name":"Journal of Physics A","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1751-8121/acfddb","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract In this paper, we consider the convex structure of the set of unital quantum channels. To do this, we introduce a novel framework to construct and characterise different families of low-rank unital quantum maps. In this framework, unital quantum maps are represented as a set of complex parameters on which we impose a set of constraints. The different families of unital maps are obtained by mapping those parameters into the operator representation of a quantum map. For these families, we also introduce a scalar measuring their distance to the set of mixed-unitary maps. We consider the particular case of qutrit channels which is the smallest set of maps for which the existence of non-unitary extremal maps is known. In this setting, we show how our framework generalises the description of well-known maps such as the antisymmetric Werner–Holevo map but also novel families of qutrit maps.