{"title":"An Improved Algorithm for The <i>k</i> -Dyck Edit Distance Problem","authors":"Dvir Fried, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, Ely Porat, Tatiana Starikovskaya","doi":"10.1145/3627539","DOIUrl":null,"url":null,"abstract":"A Dyck sequence is a sequence of opening and closing parentheses (of various types) that is balanced. The Dyck edit distance of a given sequence of parentheses S is the smallest number of edit operations (insertions, deletions, and substitutions) needed to transform S into a Dyck sequence. We consider the threshold Dyck edit distance problem, where the input is a sequence of parentheses S and a positive integer k , and the goal is to compute the Dyck edit distance of S only if the distance is at most k , and otherwise report that the distance is larger than k . Backurs and Onak [PODS’16] showed that the threshold Dyck edit distance problem can be solved in O ( n + k 16 ) time. In this work, we design new algorithms for the threshold Dyck edit distance problem which costs O ( n + k 4.544184 ) time with high probability or O ( n + k 4.853059 ) deterministically. Our algorithms combine several new structural properties of the Dyck edit distance problem, a refined algorithm for fast (min , +) matrix product, and a careful modification of ideas used in Valiant’s parsing algorithm.","PeriodicalId":50922,"journal":{"name":"ACM Transactions on Algorithms","volume":"1 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3627539","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
A Dyck sequence is a sequence of opening and closing parentheses (of various types) that is balanced. The Dyck edit distance of a given sequence of parentheses S is the smallest number of edit operations (insertions, deletions, and substitutions) needed to transform S into a Dyck sequence. We consider the threshold Dyck edit distance problem, where the input is a sequence of parentheses S and a positive integer k , and the goal is to compute the Dyck edit distance of S only if the distance is at most k , and otherwise report that the distance is larger than k . Backurs and Onak [PODS’16] showed that the threshold Dyck edit distance problem can be solved in O ( n + k 16 ) time. In this work, we design new algorithms for the threshold Dyck edit distance problem which costs O ( n + k 4.544184 ) time with high probability or O ( n + k 4.853059 ) deterministically. Our algorithms combine several new structural properties of the Dyck edit distance problem, a refined algorithm for fast (min , +) matrix product, and a careful modification of ideas used in Valiant’s parsing algorithm.
期刊介绍:
ACM Transactions on Algorithms welcomes submissions of original research of the highest quality dealing with algorithms that are inherently discrete and finite, and having mathematical content in a natural way, either in the objective or in the analysis. Most welcome are new algorithms and data structures, new and improved analyses, and complexity results. Specific areas of computation covered by the journal include
combinatorial searches and objects;
counting;
discrete optimization and approximation;
randomization and quantum computation;
parallel and distributed computation;
algorithms for
graphs,
geometry,
arithmetic,
number theory,
strings;
on-line analysis;
cryptography;
coding;
data compression;
learning algorithms;
methods of algorithmic analysis;
discrete algorithms for application areas such as
biology,
economics,
game theory,
communication,
computer systems and architecture,
hardware design,
scientific computing