Adsorptive performance of a new magnetic hydrochar nanocomposite for highly efficient removal of cadmium ions from water: Mechanism, modeling, and reusability studies

Jari S. Algethami, Mohsen A.M. Alhamami, Ayoub Abdullah Alqadami, Saad Melhi, Amal F. Seliem
{"title":"Adsorptive performance of a new magnetic hydrochar nanocomposite for highly efficient removal of cadmium ions from water: Mechanism, modeling, and reusability studies","authors":"Jari S. Algethami, Mohsen A.M. Alhamami, Ayoub Abdullah Alqadami, Saad Melhi, Amal F. Seliem","doi":"10.1016/j.eti.2023.103404","DOIUrl":null,"url":null,"abstract":"In this study, a novel and effective magnetic watermelon seed hydrochar (MWSHC) was successfully synthesized via hydrothermal carbonization technique and in situ co-precipitation method. The prepared magnetic watermelon seed waste hydrochar has been utilized for the elimination of cadmium ions from the aqueous environment. The structural morphology, surface properties, and thermal stability of MWSHC adsorbent were characterized using FTIR, SEM, XRD, BET surface area, and TGA analysis, which demonstrated the successful synthesis of MWSHC. An extensive study of Cd(II) adsorption was conducted by assessing the influence of contact time, adsorbent mass, pH, initial Cd(II) concentration, temperature, and coexisting cations on the adsorption process of Cd(II). The results revealed that the removal efficiency of Cd(II) was 96.60% achieved at pH 7.0, time: 300 min, and dosage: 0.01 g, T: 298 K. Adsorption isotherm and kinetic parameters were estimated. The results indicated that the Cd(II) adsorption onto MWSHC followed the Freundlich and pseudo-second-order models. Based on the Langmuir equation, the MWSHC has a maximum adsorption capacity of 347.2 mg/g at 298 K. The reusability of magnetic hydrochar nanocomposite was studied, revealing that around 84.4% Cd(II) was still removed after four cycles. In conclusion, the newly- prepared MWSHC adsorbent has the advantages of high adsorption capacity, cost-effectiveness, and easy separation, thus having promising applications in effectively removing cadmium(II) from the aqueous environment.","PeriodicalId":11899,"journal":{"name":"Environmental Technology and Innovation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Technology and Innovation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.eti.2023.103404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, a novel and effective magnetic watermelon seed hydrochar (MWSHC) was successfully synthesized via hydrothermal carbonization technique and in situ co-precipitation method. The prepared magnetic watermelon seed waste hydrochar has been utilized for the elimination of cadmium ions from the aqueous environment. The structural morphology, surface properties, and thermal stability of MWSHC adsorbent were characterized using FTIR, SEM, XRD, BET surface area, and TGA analysis, which demonstrated the successful synthesis of MWSHC. An extensive study of Cd(II) adsorption was conducted by assessing the influence of contact time, adsorbent mass, pH, initial Cd(II) concentration, temperature, and coexisting cations on the adsorption process of Cd(II). The results revealed that the removal efficiency of Cd(II) was 96.60% achieved at pH 7.0, time: 300 min, and dosage: 0.01 g, T: 298 K. Adsorption isotherm and kinetic parameters were estimated. The results indicated that the Cd(II) adsorption onto MWSHC followed the Freundlich and pseudo-second-order models. Based on the Langmuir equation, the MWSHC has a maximum adsorption capacity of 347.2 mg/g at 298 K. The reusability of magnetic hydrochar nanocomposite was studied, revealing that around 84.4% Cd(II) was still removed after four cycles. In conclusion, the newly- prepared MWSHC adsorbent has the advantages of high adsorption capacity, cost-effectiveness, and easy separation, thus having promising applications in effectively removing cadmium(II) from the aqueous environment.
一种新型磁性碳氢纳米复合材料对水中镉离子的高效吸附性能:机理、建模和可重复利用性研究
本研究通过水热炭化技术和原位共沉淀法成功合成了一种新型高效的西瓜籽磁性水炭。利用制备的磁性西瓜籽废氢炭去除水环境中的镉离子。采用FTIR、SEM、XRD、BET比表面积和TGA等分析手段对MWSHC吸附剂的结构形态、表面性能和热稳定性进行了表征,证明了MWSHC的成功合成。通过评估接触时间、吸附剂质量、pH、初始Cd(II)浓度、温度和共存阳离子对Cd(II)吸附过程的影响,对Cd(II)的吸附进行了广泛的研究。结果表明,在pH 7.0、时间300 min、投加量0.01 g、温度298 K条件下,对Cd(II)的去除率为96.60%。测定了吸附等温线和动力学参数。结果表明,MWSHC对Cd(II)的吸附符合Freundlich和拟二阶模型。根据Langmuir方程,MWSHC在298 K时的最大吸附量为347.2 mg/g。研究了磁性碳氢纳米复合材料的可重复使用性,结果表明,经过4次循环后,仍有84.4%的Cd(II)被去除。综上所述,新制备的MWSHC吸附剂具有吸附容量大、成本效益高、易于分离等优点,在有效去除水中环境中的镉(II)方面具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信