A Modified Iterative Method for Solving the Non-symmetric Coupled Algebraic Riccati Equation

IF 0.6 4区 数学 Q3 MATHEMATICS
Li Wang, Yibo Wang
{"title":"A Modified Iterative Method for Solving the Non-symmetric Coupled Algebraic Riccati Equation","authors":"Li Wang, Yibo Wang","doi":"10.11650/tjm/231101","DOIUrl":null,"url":null,"abstract":"In this paper, a modified alternately linear implicit (MALI) iteration method is derived for solving the non-symmetric coupled algebraic Riccati equation (NCARE). In the MALI iteration algorithm, the coefficient matrices of the linear matrix equations are fixed at each iteration step. In addition, the MALI iteration method utilizes a weighted average of the estimates in both the last step and current step to update the estimates in the next iteration step. Further, we give the convergence theory of the modified algorithm. Last, numerical examples demonstrate the effectiveness and feasibility of the derived algorithm.","PeriodicalId":22176,"journal":{"name":"Taiwanese Journal of Mathematics","volume":"72 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Taiwanese Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11650/tjm/231101","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a modified alternately linear implicit (MALI) iteration method is derived for solving the non-symmetric coupled algebraic Riccati equation (NCARE). In the MALI iteration algorithm, the coefficient matrices of the linear matrix equations are fixed at each iteration step. In addition, the MALI iteration method utilizes a weighted average of the estimates in both the last step and current step to update the estimates in the next iteration step. Further, we give the convergence theory of the modified algorithm. Last, numerical examples demonstrate the effectiveness and feasibility of the derived algorithm.
求解非对称耦合代数Riccati方程的改进迭代法
本文导出了求解非对称耦合代数Riccati方程(NCARE)的改进交替线性隐式迭代法。在MALI迭代算法中,线性矩阵方程的系数矩阵在每个迭代步都是固定的。此外,MALI迭代方法利用最后一步和当前步骤中估计的加权平均值来更新下一个迭代步骤中的估计。进一步给出了改进算法的收敛性理论。最后,通过数值算例验证了该算法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
35
审稿时长
3 months
期刊介绍: The Taiwanese Journal of Mathematics, published by the Mathematical Society of the Republic of China (Taiwan), is a continuation of the former Chinese Journal of Mathematics (1973-1996). It aims to publish original research papers and survey articles in all areas of mathematics. It will also occasionally publish proceedings of conferences co-organized by the Society. The purpose is to reflect the progress of the mathematical research in Taiwan and, by providing an international forum, to stimulate its further developments. The journal appears bimonthly each year beginning from 2008.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信