Conformal vector fields on N(k)-paracontact and para-Kenmotsu manifolds

Pub Date : 2023-01-01 DOI:10.18514/mmn.2023.4098
Arpan Sardar, Uday Chand De
{"title":"Conformal vector fields on N(k)-paracontact and para-Kenmotsu manifolds","authors":"Arpan Sardar, Uday Chand De","doi":"10.18514/mmn.2023.4098","DOIUrl":null,"url":null,"abstract":". In this article, we initiate the study of conformal vector fields in paracontact geometry. First, we establish that if the Reeb vector field ζ is a conformal vector field on N ( k ) -paracontact metric manifold, then the manifold becomes a para-Sasakian manifold. Next, we show that if the conformal vector field V is pointwise collinear with the Reeb vector field ζ , then the manifold recovers a para-Sasakian manifold as well as V is a constant multiple of ζ . Furthermore, we prove that if a 3-dimensional N ( k ) -paracontact metric manifold admits a Killing vector field V , then either it is a space of constant sectional curvature k or, V is an infinitesimal strict paracontact transformation. Besides these, we also investigate conformal vector fields on para-Kenmotsu manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

. In this article, we initiate the study of conformal vector fields in paracontact geometry. First, we establish that if the Reeb vector field ζ is a conformal vector field on N ( k ) -paracontact metric manifold, then the manifold becomes a para-Sasakian manifold. Next, we show that if the conformal vector field V is pointwise collinear with the Reeb vector field ζ , then the manifold recovers a para-Sasakian manifold as well as V is a constant multiple of ζ . Furthermore, we prove that if a 3-dimensional N ( k ) -paracontact metric manifold admits a Killing vector field V , then either it is a space of constant sectional curvature k or, V is an infinitesimal strict paracontact transformation. Besides these, we also investigate conformal vector fields on para-Kenmotsu manifolds.
分享
查看原文
N(k)-准接触和准kenmotsu流形上的共形向量场
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信