{"title":"Conformal vector fields on N(k)-paracontact and para-Kenmotsu manifolds","authors":"Arpan Sardar, Uday Chand De","doi":"10.18514/mmn.2023.4098","DOIUrl":null,"url":null,"abstract":". In this article, we initiate the study of conformal vector fields in paracontact geometry. First, we establish that if the Reeb vector field ζ is a conformal vector field on N ( k ) -paracontact metric manifold, then the manifold becomes a para-Sasakian manifold. Next, we show that if the conformal vector field V is pointwise collinear with the Reeb vector field ζ , then the manifold recovers a para-Sasakian manifold as well as V is a constant multiple of ζ . Furthermore, we prove that if a 3-dimensional N ( k ) -paracontact metric manifold admits a Killing vector field V , then either it is a space of constant sectional curvature k or, V is an infinitesimal strict paracontact transformation. Besides these, we also investigate conformal vector fields on para-Kenmotsu manifolds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18514/mmn.2023.4098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
. In this article, we initiate the study of conformal vector fields in paracontact geometry. First, we establish that if the Reeb vector field ζ is a conformal vector field on N ( k ) -paracontact metric manifold, then the manifold becomes a para-Sasakian manifold. Next, we show that if the conformal vector field V is pointwise collinear with the Reeb vector field ζ , then the manifold recovers a para-Sasakian manifold as well as V is a constant multiple of ζ . Furthermore, we prove that if a 3-dimensional N ( k ) -paracontact metric manifold admits a Killing vector field V , then either it is a space of constant sectional curvature k or, V is an infinitesimal strict paracontact transformation. Besides these, we also investigate conformal vector fields on para-Kenmotsu manifolds.