{"title":"Out-graphic topology on directed graphs","authors":"","doi":"10.28919/jmcs/8189","DOIUrl":null,"url":null,"abstract":",","PeriodicalId":36607,"journal":{"name":"Journal of Mathematical and Computational Science","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical and Computational Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.28919/jmcs/8189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
本文在有向图G = (V,E)的顶点集合上定义了一个拓扑TGout,它没有孤立的顶点,称为图外拓扑。当图是局部有限时,T out G将是一个亚历山德罗夫拓扑,我们给出了最小基的一些特征。然后给出一些开集和闭集。研究了有向图之间的函数,以及图拓扑空间之间的函数和它们之间的关系。最后,对于强连通有向图,我们证明了拓扑空间(V,TGout)可以断开,但在其他情况下可以连接。