COMBINATORIAL DUAL BOUNDS ON THE LEAST COST INFLUENCE PROBLEM

Q4 Decision Sciences
Renato Silva de Melo, André Luís Vignatti, Flávio Keidi Miyazawa, Matheus Jun Ota
{"title":"COMBINATORIAL DUAL BOUNDS ON THE LEAST COST INFLUENCE PROBLEM","authors":"Renato Silva de Melo, André Luís Vignatti, Flávio Keidi Miyazawa, Matheus Jun Ota","doi":"10.1590/0101-7438.2023.043.00275468","DOIUrl":null,"url":null,"abstract":"The Least Cost Influence Problem is a combinatorial optimization problem that appears in the context of social networks. The objective is to give incentives to individuals of a network, such that some information spreads to a desired fraction of the network at minimum cost. We introduce a problem-dependent algorithm in a branch-and-bound scheme to compute a dual bound for this problem. The idea is to exploit the connectivity properties of sub-graphs of the input graph associated with each node of the branch-and-bound tree and use it to increase each sub-problem’s lower bound. Our algorithm works well and finds a lower bound tighter than the LP-relaxation in linear time in the size of the graph. Computational experiments with synthetic graphs and real-world social networks show improvements in using our proposed bounds. The improvements are gains in running time or gap reduction for exact solutions to the problem.","PeriodicalId":35341,"journal":{"name":"Pesquisa Operacional","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesquisa Operacional","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/0101-7438.2023.043.00275468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

The Least Cost Influence Problem is a combinatorial optimization problem that appears in the context of social networks. The objective is to give incentives to individuals of a network, such that some information spreads to a desired fraction of the network at minimum cost. We introduce a problem-dependent algorithm in a branch-and-bound scheme to compute a dual bound for this problem. The idea is to exploit the connectivity properties of sub-graphs of the input graph associated with each node of the branch-and-bound tree and use it to increase each sub-problem’s lower bound. Our algorithm works well and finds a lower bound tighter than the LP-relaxation in linear time in the size of the graph. Computational experiments with synthetic graphs and real-world social networks show improvements in using our proposed bounds. The improvements are gains in running time or gap reduction for exact solutions to the problem.
最小代价影响问题的组合对偶界
最小成本影响问题是出现在社会网络环境下的组合优化问题。目标是激励网络中的个体,使某些信息以最小的成本传播到网络的期望部分。我们在分支定界格式中引入了一个与问题相关的算法来计算这一问题的对偶界。其思想是利用与分支定界树的每个节点相关联的输入图的子图的连通性属性,并用它来增加每个子问题的下界。我们的算法效果很好,并且在图的大小上找到了一个比线性时间的lp松弛更紧的下界。合成图和现实社会网络的计算实验表明,使用我们提出的边界有了改进。这些改进是运行时间的增加或问题精确解决方案的间隙减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pesquisa Operacional
Pesquisa Operacional Decision Sciences-Management Science and Operations Research
CiteScore
1.60
自引率
0.00%
发文量
19
审稿时长
8 weeks
期刊介绍: Pesquisa Operacional is published each semester by the Sociedade Brasileira de Pesquisa Operacional - SOBRAPO, performing one volume per year, and is distributed free of charge to its associates. The abbreviated title of the journal is Pesq. Oper., which should be used in bibliographies, footnotes and bibliographical references and strips.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信