Smoothed Online Optimization with Unreliable Predictions

Q4 Computer Science
Daan Rutten, Nicolas Christianson, Debankur Mukherjee, Adam Wierman
{"title":"Smoothed Online Optimization with Unreliable Predictions","authors":"Daan Rutten, Nicolas Christianson, Debankur Mukherjee, Adam Wierman","doi":"10.1145/3606376.3593570","DOIUrl":null,"url":null,"abstract":"We consider online optimization with switching costs in a normed vector space (X, ||·||) wherein, at each time t, a decision maker observes a non-convex hitting cost function ƒ : t X →[0, ∞] and must decide upon some xt∈X→, paying ƒt (xt) + || xt-xt-1||, where ||·|| characterizes the switching cost. Throughout, we assume that ƒt is globally α-polyhedral, i.e., ƒt has a unique minimizer υt ∈X, and, for all x ∈ X, ƒ t) (x) ≥ ƒt + α · ||x - υ t. Moreover, we assume that the decision maker has access to an untrusted prediction xt of the optimal decision during each round, such as the decision suggested by a black-box AI tool.","PeriodicalId":35745,"journal":{"name":"Performance Evaluation Review","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Performance Evaluation Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3606376.3593570","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

We consider online optimization with switching costs in a normed vector space (X, ||·||) wherein, at each time t, a decision maker observes a non-convex hitting cost function ƒ : t X →[0, ∞] and must decide upon some xt∈X→, paying ƒt (xt) + || xt-xt-1||, where ||·|| characterizes the switching cost. Throughout, we assume that ƒt is globally α-polyhedral, i.e., ƒt has a unique minimizer υt ∈X, and, for all x ∈ X, ƒ t) (x) ≥ ƒt + α · ||x - υ t. Moreover, we assume that the decision maker has access to an untrusted prediction xt of the optimal decision during each round, such as the decision suggested by a black-box AI tool.
平滑在线优化与不可靠的预测
我们考虑在赋范向量空间(X, ||·|)中具有切换代价的在线优化问题,其中,在每次时刻t,决策者观察到一个非凸命中代价函数f: t X→[0,∞],并且必须决定某个xt∈X→,支付ƒt (xt) + || xt-xt-1||,其中||·||表示切换代价。在整个过程中,我们假设ƒt是全局α-多面体,即ƒt有一个唯一的最小值 t∈X,并且对于所有X∈X, f t) (X)≥ƒt + α·|| X - υt。此外,我们假设决策者在每一轮中都可以获得最优决策的不可信预测xt,例如由黑盒AI工具建议的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Performance Evaluation Review
Performance Evaluation Review Computer Science-Computer Networks and Communications
CiteScore
1.00
自引率
0.00%
发文量
193
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信