{"title":"Portfolio construction with Gaussian mixture returns and exponential utility via convex optimization","authors":"Eric Luxenberg, Stephen Boyd","doi":"10.1007/s11081-023-09814-y","DOIUrl":null,"url":null,"abstract":"We consider the problem of choosing an optimal portfolio, assuming the asset returns have a Gaussian mixture distribution, with the objective of maximizing expected exponential utility. In this paper we show that this problem is convex, and readily solved exactly using domain-specific languages for convex optimization, without the need for sampling or scenarios. We then show how the closely related problem of minimizing entropic value at risk can also be formulated as a convex optimization problem.","PeriodicalId":56141,"journal":{"name":"Optimization and Engineering","volume":"47 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11081-023-09814-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of choosing an optimal portfolio, assuming the asset returns have a Gaussian mixture distribution, with the objective of maximizing expected exponential utility. In this paper we show that this problem is convex, and readily solved exactly using domain-specific languages for convex optimization, without the need for sampling or scenarios. We then show how the closely related problem of minimizing entropic value at risk can also be formulated as a convex optimization problem.
期刊介绍:
Optimization and Engineering is a multidisciplinary journal; its primary goal is to promote the application of optimization methods in the general area of engineering sciences. We expect submissions to OPTE not only to make a significant optimization contribution but also to impact a specific engineering application.
Topics of Interest:
-Optimization: All methods and algorithms of mathematical optimization, including blackbox and derivative-free optimization, continuous optimization, discrete optimization, global optimization, linear and conic optimization, multiobjective optimization, PDE-constrained optimization & control, and stochastic optimization. Numerical and implementation issues, optimization software, benchmarking, and case studies.
-Engineering Sciences: Aerospace engineering, biomedical engineering, chemical & process engineering, civil, environmental, & architectural engineering, electrical engineering, financial engineering, geosciences, healthcare engineering, industrial & systems engineering, mechanical engineering & MDO, and robotics.