Sub-micrometer real-time imaging of trajectory of alpha particles using GAGG plate and CMOS camera

IF 1.3 4区 工程技术 Q3 INSTRUMENTS & INSTRUMENTATION
Seiichi Yamamoto, Masao Yoshino, Kohei Nakanishi, Katsunori Yogo, Kei Kamada, Akira Yoshikawa, Nanase Koshikawa, Jun Kataoka
{"title":"Sub-micrometer real-time imaging of trajectory of alpha particles using GAGG plate and CMOS camera","authors":"Seiichi Yamamoto, Masao Yoshino, Kohei Nakanishi, Katsunori Yogo, Kei Kamada, Akira Yoshikawa, Nanase Koshikawa, Jun Kataoka","doi":"10.1088/1748-0221/18/10/t10003","DOIUrl":null,"url":null,"abstract":"Abstract High-resolution and real-time imaging of the trajectories of alpha particles is desired in nuclear medicine and nuclear engineering. Although an imaging method using a scintillator plate combined with a magnifying unit and a cooled electron multiplying charge-coupled device (EM-CCD) camera is a possible method of obtaining high-resolution trajectory images, the spatial resolution of the system is limited to ∼2 μm. To overcome the spatial resolution limitations of this method on trajectory imaging, we used a cooled complementally metal oxide (CMOS) camera in which the sensor had a much larger number of pixels, which were also smaller. Using the CMOS camera based imaging system, we could measure the trajectories of alpha particles in real time with the spatial resolution of 0.34 μm FWHM. With smoothing of the images to reduce image noise, spatial resolution was still kept to less than 0.75 μm. We conclude that this CMOS camera-based alpha-particle trajectory-imaging system is promising for alpha-particle or other particles imaging where ultrahigh spatial resolution is required.","PeriodicalId":16184,"journal":{"name":"Journal of Instrumentation","volume":"2 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Instrumentation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1748-0221/18/10/t10003","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract High-resolution and real-time imaging of the trajectories of alpha particles is desired in nuclear medicine and nuclear engineering. Although an imaging method using a scintillator plate combined with a magnifying unit and a cooled electron multiplying charge-coupled device (EM-CCD) camera is a possible method of obtaining high-resolution trajectory images, the spatial resolution of the system is limited to ∼2 μm. To overcome the spatial resolution limitations of this method on trajectory imaging, we used a cooled complementally metal oxide (CMOS) camera in which the sensor had a much larger number of pixels, which were also smaller. Using the CMOS camera based imaging system, we could measure the trajectories of alpha particles in real time with the spatial resolution of 0.34 μm FWHM. With smoothing of the images to reduce image noise, spatial resolution was still kept to less than 0.75 μm. We conclude that this CMOS camera-based alpha-particle trajectory-imaging system is promising for alpha-particle or other particles imaging where ultrahigh spatial resolution is required.
利用GAGG板和CMOS相机对α粒子轨迹进行亚微米实时成像
核医学和核工程需要高分辨率和实时的α粒子轨迹成像。虽然利用结合了放大单元和冷却电子倍增电荷耦合器件(EM-CCD)相机的闪烁片成像方法是获得高分辨率轨迹图像的可能方法,但该系统的空间分辨率限制在~ 2 μm。为了克服这种方法在轨迹成像上的空间分辨率限制,我们使用了一种冷却的互补金属氧化物(CMOS)相机,其中传感器具有更大数量的像素,也更小。利用基于CMOS相机的成像系统,我们可以实时测量α粒子的轨迹,空间分辨率为0.34 μm FWHM。通过对图像进行平滑处理,降低图像噪声,使空间分辨率保持在0.75 μm以内。我们得出结论,这种基于CMOS相机的α粒子轨迹成像系统在需要超高空间分辨率的α粒子或其他粒子成像中是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Instrumentation
Journal of Instrumentation 工程技术-仪器仪表
CiteScore
2.40
自引率
15.40%
发文量
827
审稿时长
7.5 months
期刊介绍: Journal of Instrumentation (JINST) covers major areas related to concepts and instrumentation in detector physics, accelerator science and associated experimental methods and techniques, theory, modelling and simulations. The main subject areas include. -Accelerators: concepts, modelling, simulations and sources- Instrumentation and hardware for accelerators: particles, synchrotron radiation, neutrons- Detector physics: concepts, processes, methods, modelling and simulations- Detectors, apparatus and methods for particle, astroparticle, nuclear, atomic, and molecular physics- Instrumentation and methods for plasma research- Methods and apparatus for astronomy and astrophysics- Detectors, methods and apparatus for biomedical applications, life sciences and material research- Instrumentation and techniques for medical imaging, diagnostics and therapy- Instrumentation and techniques for dosimetry, monitoring and radiation damage- Detectors, instrumentation and methods for non-destructive tests (NDT)- Detector readout concepts, electronics and data acquisition methods- Algorithms, software and data reduction methods- Materials and associated technologies, etc.- Engineering and technical issues. JINST also includes a section dedicated to technical reports and instrumentation theses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信