Canonical stratification of definable Lie groupoids

IF 0.4 Q4 MATHEMATICS
Masato Tanabe
{"title":"Canonical stratification of definable Lie groupoids","authors":"Masato Tanabe","doi":"10.5427/jsing.2023.26d","DOIUrl":null,"url":null,"abstract":"Our aim is to precisely present a tame topology counterpart to canonical stratification of a Lie groupoid. We consider a definable Lie groupoid in semialgebraic, subanalytic, o-minimal over R, or more generally, Shiota's X-category. We show that there exists a canonical Whitney stratification of the Lie groupoid into definable strata which are invariant under the groupoid action. This is a generalization and refinement of results on real algebraic group action which J.N. Mather and V.A. Vassiliev independently stated with sketchy proofs. A crucial change to their proofs is to use Shiota's isotopy lemma and approximation theorem in the context of tame topology.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2023.26d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Our aim is to precisely present a tame topology counterpart to canonical stratification of a Lie groupoid. We consider a definable Lie groupoid in semialgebraic, subanalytic, o-minimal over R, or more generally, Shiota's X-category. We show that there exists a canonical Whitney stratification of the Lie groupoid into definable strata which are invariant under the groupoid action. This is a generalization and refinement of results on real algebraic group action which J.N. Mather and V.A. Vassiliev independently stated with sketchy proofs. A crucial change to their proofs is to use Shiota's isotopy lemma and approximation theorem in the context of tame topology.
可定义李群的典型分层
我们的目标是精确地给出李群的正则分层对应的驯服拓扑。我们考虑一个半代数的、次解析的、R上0极小的,或者更一般地说,Shiota的x范畴中的可定义李群。证明了李群的典型惠特尼分层存在于群作用下不变的可定义地层中。这是对J.N. Mather和V.A. Vassiliev独立给出的实代数群作用结果的推广和细化。他们的证明的一个关键变化是在温和拓扑的背景下使用了Shiota的同位素引理和近似定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
0.00%
发文量
28
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信