{"title":"Canonical stratification of definable Lie groupoids","authors":"Masato Tanabe","doi":"10.5427/jsing.2023.26d","DOIUrl":null,"url":null,"abstract":"Our aim is to precisely present a tame topology counterpart to canonical stratification of a Lie groupoid. We consider a definable Lie groupoid in semialgebraic, subanalytic, o-minimal over R, or more generally, Shiota's X-category. We show that there exists a canonical Whitney stratification of the Lie groupoid into definable strata which are invariant under the groupoid action. This is a generalization and refinement of results on real algebraic group action which J.N. Mather and V.A. Vassiliev independently stated with sketchy proofs. A crucial change to their proofs is to use Shiota's isotopy lemma and approximation theorem in the context of tame topology.","PeriodicalId":44411,"journal":{"name":"Journal of Singularities","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Singularities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5427/jsing.2023.26d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Our aim is to precisely present a tame topology counterpart to canonical stratification of a Lie groupoid. We consider a definable Lie groupoid in semialgebraic, subanalytic, o-minimal over R, or more generally, Shiota's X-category. We show that there exists a canonical Whitney stratification of the Lie groupoid into definable strata which are invariant under the groupoid action. This is a generalization and refinement of results on real algebraic group action which J.N. Mather and V.A. Vassiliev independently stated with sketchy proofs. A crucial change to their proofs is to use Shiota's isotopy lemma and approximation theorem in the context of tame topology.