Nonlinear Resonance in a Position-Dependent Mass-Duffing Oscillator System with Monostable Potentials Driven by an Amplitude-Modulated Signal

Q3 Mathematics
K. Suddalai Kannan, S. M. Abdul Kader, V. Chinnathambi, M.V. Sethu Meenakshi, S. Rajasekar
{"title":"Nonlinear Resonance in a Position-Dependent Mass-Duffing Oscillator System with Monostable Potentials Driven by an Amplitude-Modulated Signal","authors":"K. Suddalai Kannan, S. M. Abdul Kader, V. Chinnathambi, M.V. Sethu Meenakshi, S. Rajasekar","doi":"10.20537/nd230903","DOIUrl":null,"url":null,"abstract":"This study examines the phenomenon of vibrational resonance (VR) in a classical positiondependent mass (PDM) system characterized by three types of single-well potentials. These potentials are influenced by an amplitude-modulated (AM) signal with $\\Omega\\gg\\omega$. Our analysis is limited to the following parametric choices: <br> (i) $\\omega_0^2$, $\\beta$, $m_0$, $\\lambda>0$ (type-1 single-well), <br> (ii) $\\omega_0^2>0$, $\\beta <0$, $2< m_0 <3$, $1< \\lambda <2$ (type-2 single-well), <br> (iii) $\\omega_0^2>0$, $\\beta <0$, $0< m_0 <2$, $0<\\lambda<1$ (type-3 single-well). <br> The system presents an intriguing scenario in which the PDM function significantly contributes to the occurrence of VR. In addition to the analytical derivation of the equation for slow motions of the system based on the high-frequency signal’s parameters using the method of direct separation of motion, numerical evidence is presented for VR and its basic dynamical behaviors are investigated. Based on the findings presented in this paper, the weak low-frequency signal within the single-well PDM system can be either attenuated or amplified by manipulating PDM parameters, such as mass amplitude ($m_0$) and mass spatial nonlinearity $\\lambda$. The outcomes of the analytical investigations are validated and further supported through numerical simulations.","PeriodicalId":36803,"journal":{"name":"Russian Journal of Nonlinear Dynamics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20537/nd230903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the phenomenon of vibrational resonance (VR) in a classical positiondependent mass (PDM) system characterized by three types of single-well potentials. These potentials are influenced by an amplitude-modulated (AM) signal with $\Omega\gg\omega$. Our analysis is limited to the following parametric choices:
(i) $\omega_0^2$, $\beta$, $m_0$, $\lambda>0$ (type-1 single-well),
(ii) $\omega_0^2>0$, $\beta <0$, $2< m_0 <3$, $1< \lambda <2$ (type-2 single-well),
(iii) $\omega_0^2>0$, $\beta <0$, $0< m_0 <2$, $0<\lambda<1$ (type-3 single-well).
The system presents an intriguing scenario in which the PDM function significantly contributes to the occurrence of VR. In addition to the analytical derivation of the equation for slow motions of the system based on the high-frequency signal’s parameters using the method of direct separation of motion, numerical evidence is presented for VR and its basic dynamical behaviors are investigated. Based on the findings presented in this paper, the weak low-frequency signal within the single-well PDM system can be either attenuated or amplified by manipulating PDM parameters, such as mass amplitude ($m_0$) and mass spatial nonlinearity $\lambda$. The outcomes of the analytical investigations are validated and further supported through numerical simulations.
由调幅信号驱动的单稳定电位位置相关质量阻尼振荡器系统的非线性共振
本文研究了以三种单井势为特征的经典位置依赖质量(PDM)系统中的振动共振(VR)现象。这些电位受到$\Omega\gg\omega$调幅信号的影响。我们的分析仅限于以下参数选择:&lt;br&gt;(一)$\omega_0^2$、$\beta$、$m_0$、$\lambda>0$(一型单井),&lt;(ii) $\omega_0^2>0$、$\beta <0$、$2< m_0 <3$、$1< \lambda <2$(2型单井),&lt;(三)$\omega_0^2>0$、$\beta <0$、$0< m_0 <2$、$0<\lambda<1$(3型单井)。&lt;br&gt;该系统呈现了一个有趣的场景,其中PDM功能显著地促进了VR的发生。基于高频信号参数,采用直接运动分离的方法,对系统的慢运动方程进行了解析推导,给出了系统慢运动的数值证据,并研究了系统的基本动力学行为。基于本文的研究结果,单井PDM系统中的微弱低频信号可以通过操纵PDM参数(如质量振幅($m_0$)和质量空间非线性$\lambda$)来衰减或放大。分析研究的结果得到了验证,并通过数值模拟得到进一步的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Nonlinear Dynamics
Russian Journal of Nonlinear Dynamics Engineering-Mechanical Engineering
CiteScore
1.20
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信