{"title":"Wireless sensor node localization algorithm combined with PSO-DFP","authors":"Jingjing Sun, Peng Zhang, Xiaohong Kong","doi":"10.1515/jisys-2022-0323","DOIUrl":null,"url":null,"abstract":"Abstract In wireless communication technology, wireless sensor networks usually need to collect and process information in very harsh environment. Therefore, accurate positioning of sensors becomes the key to wireless communication technology. In this study, Davidon–Fletcher–Powell (DFP) algorithm was combined with particle swarm optimization (PSO) to reduce the influence of distance estimation error on positioning accuracy by using the characteristics of PSO iterative optimization. From the experimental results, among the average precision (AP) values of DFP, PSO, and PSO-DFP algorithms, the AP value of PSO-DFP was 0.9972. In the analysis of node positioning error, the maximum node positioning error of PSO-DFP was only about 21 mm. The results showed that the PSO-DFP algorithm had better performance, and the average positioning error of the algorithm was inversely proportional to the proportion of anchor nodes, node communication radius, and node density. In conclusion, the wireless sensor node location algorithm combined with PSO-DFP has a better location effect and higher stability than the traditional location algorithm.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"91 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In wireless communication technology, wireless sensor networks usually need to collect and process information in very harsh environment. Therefore, accurate positioning of sensors becomes the key to wireless communication technology. In this study, Davidon–Fletcher–Powell (DFP) algorithm was combined with particle swarm optimization (PSO) to reduce the influence of distance estimation error on positioning accuracy by using the characteristics of PSO iterative optimization. From the experimental results, among the average precision (AP) values of DFP, PSO, and PSO-DFP algorithms, the AP value of PSO-DFP was 0.9972. In the analysis of node positioning error, the maximum node positioning error of PSO-DFP was only about 21 mm. The results showed that the PSO-DFP algorithm had better performance, and the average positioning error of the algorithm was inversely proportional to the proportion of anchor nodes, node communication radius, and node density. In conclusion, the wireless sensor node location algorithm combined with PSO-DFP has a better location effect and higher stability than the traditional location algorithm.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.