A Study of a Mathematical Model with a Movable Singular Point in a Fourth-Order Nonlinear Differential Equation

Q3 Mathematics
M. V. Gasanov, A. G. Gulkanov
{"title":"A Study of a Mathematical Model with a Movable Singular Point in a Fourth-Order Nonlinear Differential Equation","authors":"M. V. Gasanov, A. G. Gulkanov","doi":"10.20537/nd230904","DOIUrl":null,"url":null,"abstract":"This article introduces a mathematical model that utilizes a nonlinear differential equation to study a range of phenomena such as nonlinear wave processes, and beam deflections. Solving this equation is challenging due to the presence of moving singular points. The article addresses two main problems: first, it establishes the existence and uniqueness of the solution of the equation and, second, it provides precise criteria for determining the existence of a moving singular point. Additionally, the article presents estimates of the error in the analytical approximate solution and validates the results through a numerical experiment.","PeriodicalId":36803,"journal":{"name":"Russian Journal of Nonlinear Dynamics","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Journal of Nonlinear Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20537/nd230904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This article introduces a mathematical model that utilizes a nonlinear differential equation to study a range of phenomena such as nonlinear wave processes, and beam deflections. Solving this equation is challenging due to the presence of moving singular points. The article addresses two main problems: first, it establishes the existence and uniqueness of the solution of the equation and, second, it provides precise criteria for determining the existence of a moving singular point. Additionally, the article presents estimates of the error in the analytical approximate solution and validates the results through a numerical experiment.
一类四阶非线性微分方程具有可动奇点的数学模型的研究
本文介绍了一个数学模型,该模型利用非线性微分方程来研究一系列现象,如非线性波动过程和光束偏转。由于存在移动的奇异点,求解该方程具有挑战性。本文主要解决两个问题:第一,建立了方程解的存在唯一性;第二,给出了确定运动奇点存在性的精确判据。此外,本文还给出了解析近似解的误差估计,并通过数值实验对结果进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Russian Journal of Nonlinear Dynamics
Russian Journal of Nonlinear Dynamics Engineering-Mechanical Engineering
CiteScore
1.20
自引率
0.00%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信