Massively parallelizable proximal algorithms for large‐scale stochastic optimal control problems

Ajay K. Sampathirao, Panagiotis Patrinos, Alberto Bemporad, Pantelis Sopasakis
{"title":"Massively parallelizable proximal algorithms for large‐scale stochastic optimal control problems","authors":"Ajay K. Sampathirao, Panagiotis Patrinos, Alberto Bemporad, Pantelis Sopasakis","doi":"10.1002/oca.3054","DOIUrl":null,"url":null,"abstract":"Abstract Scenario‐based stochastic optimal control problems suffer from the curse of dimensionality as they can easily grow to six and seven figure sizes. First‐order methods are suitable as they can deal with such large‐scale problems, but may perform poorly and fail to converge within a reasonable number of iterations. To achieve a fast rate of convergence and high solution speeds, in this article, we propose the use of two proximal quasi‐Newtonian limited‐memory algorithms— minfbe applied to the dual problem and the Newton‐type alternating minimization algorithm ( nama )—which can be massively parallelized on lockstep hardware such as graphics processing units. In particular, we use minfbe and nama to solve scenario‐based stochastic optimal control problems with affine dynamics, convex quadratic cost functions (with the stage cost functions being strongly convex in the control variable) and joint state‐input convex constraints. We demonstrate the performance of these methods, in terms of convergence speed and parallelizability, on large‐scale problems involving millions of variables.","PeriodicalId":105945,"journal":{"name":"Optimal Control Applications and Methods","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimal Control Applications and Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/oca.3054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract Scenario‐based stochastic optimal control problems suffer from the curse of dimensionality as they can easily grow to six and seven figure sizes. First‐order methods are suitable as they can deal with such large‐scale problems, but may perform poorly and fail to converge within a reasonable number of iterations. To achieve a fast rate of convergence and high solution speeds, in this article, we propose the use of two proximal quasi‐Newtonian limited‐memory algorithms— minfbe applied to the dual problem and the Newton‐type alternating minimization algorithm ( nama )—which can be massively parallelized on lockstep hardware such as graphics processing units. In particular, we use minfbe and nama to solve scenario‐based stochastic optimal control problems with affine dynamics, convex quadratic cost functions (with the stage cost functions being strongly convex in the control variable) and joint state‐input convex constraints. We demonstrate the performance of these methods, in terms of convergence speed and parallelizability, on large‐scale problems involving millions of variables.

Abstract Image

大规模随机最优控制问题的大规模并行近端算法
基于场景的随机最优控制问题受到维度诅咒的困扰,因为它们很容易增长到六位数和七位数。一阶方法是合适的,因为它们可以处理如此大规模的问题,但可能表现不佳,并且在合理的迭代次数内无法收敛。为了实现快速的收敛速度和高求解速度,在本文中,我们建议使用两种近似的准牛顿有限内存算法-适用于对偶问题的minfbe和牛顿型交替最小化算法(nama) -它们可以在同步硬件(如图形处理单元)上大规模并行化。特别是,我们使用minfbe和nama来解决基于场景的随机最优控制问题,这些问题具有仿射动力学、凸二次代价函数(在控制变量中阶段代价函数是强凸的)和联合状态输入凸约束。我们在涉及数百万变量的大规模问题上展示了这些方法在收敛速度和并行性方面的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信