Autoregressive moving average model for matrix time series

IF 0.7 Q3 STATISTICS & PROBABILITY
Shujin Wu, Ping Bi
{"title":"Autoregressive moving average model for matrix time series","authors":"Shujin Wu, Ping Bi","doi":"10.1080/24754269.2023.2262360","DOIUrl":null,"url":null,"abstract":"In the paper, the autoregressive moving average model for matrix time series (MARMA) is investigated. The properties of the MARMA model are investigated by using the conditional least square estimation, the conditional maximum likelihood estimation, the projection theorem in Hilbert space and the decomposition technique of time series, which include necessary and sufficient conditions for stationarity and invertibility, model parameter estimation, model testing and model forecasting.","PeriodicalId":22070,"journal":{"name":"Statistical Theory and Related Fields","volume":"23 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Theory and Related Fields","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24754269.2023.2262360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper, the autoregressive moving average model for matrix time series (MARMA) is investigated. The properties of the MARMA model are investigated by using the conditional least square estimation, the conditional maximum likelihood estimation, the projection theorem in Hilbert space and the decomposition technique of time series, which include necessary and sufficient conditions for stationarity and invertibility, model parameter estimation, model testing and model forecasting.
矩阵时间序列的自回归移动平均模型
研究了矩阵时间序列的自回归移动平均模型(MARMA)。利用条件最小二乘估计、条件极大似然估计、Hilbert空间投影定理和时间序列分解技术研究了MARMA模型的性质,包括平稳性和可逆性的充分必要条件、模型参数估计、模型检验和模型预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信