RFID-enabled localization system for mobile robot in the workshop

IF 1.6 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS
Haishu Ma, Zongzheng Ma, Lixia Li, Ya Gao
{"title":"RFID-enabled localization system for mobile robot in the workshop","authors":"Haishu Ma, Zongzheng Ma, Lixia Li, Ya Gao","doi":"10.3233/rft-221511","DOIUrl":null,"url":null,"abstract":"The development of RFID enabled intelligent localization system in the workshop is of great importance for reducing the operation cost, increasing production efficiency and improving management capabilities. From the aspects of feature extraction of RF fingerprint and localization algorithm, the scheme of mobile target tracking based on the fusion of inertial navigation and fingerprinting is explored. The deep neural network is used to establish the nonlinear relationship between fingerprint and coordinates. After the initial position of the mobile robot is obtained, Kalman filter is used to fuse the data collected by IMU and wheel encoder. Experimental results show that the proposed method is feasible and be able to track the mobile robot accurately.","PeriodicalId":42288,"journal":{"name":"International Journal of RF Technologies-Research and Applications","volume":"15 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of RF Technologies-Research and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/rft-221511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The development of RFID enabled intelligent localization system in the workshop is of great importance for reducing the operation cost, increasing production efficiency and improving management capabilities. From the aspects of feature extraction of RF fingerprint and localization algorithm, the scheme of mobile target tracking based on the fusion of inertial navigation and fingerprinting is explored. The deep neural network is used to establish the nonlinear relationship between fingerprint and coordinates. After the initial position of the mobile robot is obtained, Kalman filter is used to fuse the data collected by IMU and wheel encoder. Experimental results show that the proposed method is feasible and be able to track the mobile robot accurately.
车间移动机器人rfid定位系统
开发基于RFID的车间智能定位系统,对降低车间运行成本、提高生产效率、提高管理能力具有重要意义。从射频指纹特征提取和定位算法两个方面,探讨了基于惯性导航和指纹融合的移动目标跟踪方案。利用深度神经网络建立指纹与坐标之间的非线性关系。在获得移动机器人的初始位置后,利用卡尔曼滤波对IMU和轮式编码器采集的数据进行融合。实验结果表明,该方法是可行的,能够准确地跟踪移动机器人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
4
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信