{"title":"Phrase-level attention network for few-shot inverse relation classification in knowledge graph","authors":"Shaojuan Wu, Chunliu Dou, Dazhuang Wang, Jitong Li, Xiaowang Zhang, Zhiyong Feng, Kewen Wang, Sofonias Yitagesu","doi":"10.1007/s11280-023-01142-6","DOIUrl":null,"url":null,"abstract":"Relation classification aims to recognize semantic relation between two given entities mentioned in the given text. Existing models have performed well on the inverse relation classification with large-scale datasets, but their performance drops significantly for few-shot learning. In this paper, we propose a Phrase-level Attention Network, function words adaptively enhanced attention framework (FAEA+), to attend class-related function words by the designed hybrid attention for few-shot inverse relation classification in Knowledge Graph. Then, an instance-aware prototype network is present to adaptively capture relation information associated with query instances and eliminate intra-class redundancy due to function words introduced. We theoretically prove that the introduction of function words will increase intra-class differences, and the designed instance-aware prototype network is competent for reducing redundancy. Experimental results show that FAEA+ significantly improved over strong baselines on two few-shot relation classification datasets. Moreover, our model has a distinct advantage in solving inverse relations, which outperforms state-of-the-art results by 16.82% under a 1-shot setting in FewRel1.0.","PeriodicalId":49356,"journal":{"name":"World Wide Web-Internet and Web Information Systems","volume":"27 1","pages":"0"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Wide Web-Internet and Web Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11280-023-01142-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Relation classification aims to recognize semantic relation between two given entities mentioned in the given text. Existing models have performed well on the inverse relation classification with large-scale datasets, but their performance drops significantly for few-shot learning. In this paper, we propose a Phrase-level Attention Network, function words adaptively enhanced attention framework (FAEA+), to attend class-related function words by the designed hybrid attention for few-shot inverse relation classification in Knowledge Graph. Then, an instance-aware prototype network is present to adaptively capture relation information associated with query instances and eliminate intra-class redundancy due to function words introduced. We theoretically prove that the introduction of function words will increase intra-class differences, and the designed instance-aware prototype network is competent for reducing redundancy. Experimental results show that FAEA+ significantly improved over strong baselines on two few-shot relation classification datasets. Moreover, our model has a distinct advantage in solving inverse relations, which outperforms state-of-the-art results by 16.82% under a 1-shot setting in FewRel1.0.
期刊介绍:
World Wide Web: Internet and Web Information Systems (WWW) is an international, archival, peer-reviewed journal which covers all aspects of the World Wide Web, including issues related to architectures, applications, Internet and Web information systems, and communities. The purpose of this journal is to provide an international forum for researchers, professionals, and industrial practitioners to share their rapidly developing knowledge and report on new advances in Internet and web-based systems. The journal also focuses on all database- and information-system topics that relate to the Internet and the Web, particularly on ways to model, design, develop, integrate, and manage these systems.
Appearing quarterly, the journal publishes (1) papers describing original ideas and new results, (2) vision papers, (3) reviews of important techniques in related areas, (4) innovative application papers, and (5) progress reports on major international research projects. Papers published in the WWW journal deal with subjects directly or indirectly related to the World Wide Web. The WWW journal provides timely, in-depth coverage of the most recent developments in the World Wide Web discipline to enable anyone involved to keep up-to-date with this dynamically changing technology.