{"title":"Stability of self-similar solutions to geometric flows","authors":"Hengrong Du, Nung Kwan Yip","doi":"10.4171/ifb/488","DOIUrl":null,"url":null,"abstract":"We show that self-similar solutions for the mean curvature flow, surface diffusion, and Willmore flow of entire graphs are stable upon perturbations of initial data with small Lipschitz norm. Roughly speaking, the perturbed solutions are asymptotically self-similar as time tends to infinity. Our results are built upon the global analytic solutions constructed by Koch and Lamm in 2012, the compactness arguments adapted by Asai and Giga in 2014, and the spatial equi-decay properties on certain weighted function spaces. The proof for all of the above flows are achieved in a unified framework by utilizing the estimates of the linearized operator.","PeriodicalId":13863,"journal":{"name":"Interfaces and Free Boundaries","volume":"355 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interfaces and Free Boundaries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/ifb/488","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We show that self-similar solutions for the mean curvature flow, surface diffusion, and Willmore flow of entire graphs are stable upon perturbations of initial data with small Lipschitz norm. Roughly speaking, the perturbed solutions are asymptotically self-similar as time tends to infinity. Our results are built upon the global analytic solutions constructed by Koch and Lamm in 2012, the compactness arguments adapted by Asai and Giga in 2014, and the spatial equi-decay properties on certain weighted function spaces. The proof for all of the above flows are achieved in a unified framework by utilizing the estimates of the linearized operator.
期刊介绍:
Interfaces and Free Boundaries is dedicated to the mathematical modelling, analysis and computation of interfaces and free boundary problems in all areas where such phenomena are pertinent. The journal aims to be a forum where mathematical analysis, partial differential equations, modelling, scientific computing and the various applications which involve mathematical modelling meet. Submissions should, ideally, emphasize the combination of theory and application.