{"title":"Learning-assisted intelligent risk assessment of highway project investment","authors":"Hongwei Liu, Zihao Zhang","doi":"10.1504/ijcsm.2023.130691","DOIUrl":null,"url":null,"abstract":"Highway project has the characteristics of large investment scale and high investment risk. Aiming at the problem of investment risk management, this paper takes 15 highway investment projects in recent ten years as the research object, and establishes an investment risk index system including 12 first-class indexes and 30 second-class indexes. The hierarchical weight model of highway engineering investment risk assessment is proposed. The intelligent evaluation of highway engineering investment risk by extreme learning machine and broad learning system algorithm is discussed. The comparative experimental results show that the improved intelligent evaluation model can evaluate and predict the investment risk of highway engineering projects more effectively. The R-square value of the improved intelligent evaluation model is increased by 0.35, and the accuracy is greatly improved. It can provide decision support for highway engineering project investment risk management.","PeriodicalId":45487,"journal":{"name":"International Journal of Computing Science and Mathematics","volume":"21 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computing Science and Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcsm.2023.130691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Highway project has the characteristics of large investment scale and high investment risk. Aiming at the problem of investment risk management, this paper takes 15 highway investment projects in recent ten years as the research object, and establishes an investment risk index system including 12 first-class indexes and 30 second-class indexes. The hierarchical weight model of highway engineering investment risk assessment is proposed. The intelligent evaluation of highway engineering investment risk by extreme learning machine and broad learning system algorithm is discussed. The comparative experimental results show that the improved intelligent evaluation model can evaluate and predict the investment risk of highway engineering projects more effectively. The R-square value of the improved intelligent evaluation model is increased by 0.35, and the accuracy is greatly improved. It can provide decision support for highway engineering project investment risk management.