Improvement of Operating Performance of a Cast-Iron Heat Exchanger by Application of a Copper Alloy Coating

IF 0.6 Q4 METALLURGY & METALLURGICAL ENGINEERING
M. Mróz, A.W. Orłowicz, M. Tupaj, M. Jacek-Burek, M. Radoń, M. Kawiński
{"title":"Improvement of Operating Performance of a Cast-Iron Heat Exchanger by Application of a Copper Alloy Coating","authors":"M. Mróz, A.W. Orłowicz, M. Tupaj, M. Jacek-Burek, M. Radoń, M. Kawiński","doi":"10.24425/afe.2019.127144","DOIUrl":null,"url":null,"abstract":"The paper deals with possibility to improve operating performance of cast-iron heat exchangers by providing them with a copper alloy (CuTi2Cr) with the use of the flame spraying method. A test exchanger was cast of a gray cast iron with vermicular graphite in ferritic-pearlitic matrix obtained in production conditions at KAW-MET Iron Foundry with the wire method used to vermicularize the material. The test samples were two plates cast in sand molds, of which one was given a flame-sprayed CuTi2Cr coat on one side. The operating performance of such model cast-iron heat exchangers, with and without CuTi2Cr coating, was tested on a set-up for determining the heat flow rate (thermal power) transferred by the heat exchanger to environment. The obtained results indicate that the value of the heat flow rate characterizing the CuTi2Cr-coated cast-iron heat exchanger was by 10% higher compared to the flow rate of heat conveyed to environment by the heat exchanger without coating.","PeriodicalId":8301,"journal":{"name":"Archives of Foundry Engineering","volume":"1973 11","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Foundry Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/afe.2019.127144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 1

Abstract

The paper deals with possibility to improve operating performance of cast-iron heat exchangers by providing them with a copper alloy (CuTi2Cr) with the use of the flame spraying method. A test exchanger was cast of a gray cast iron with vermicular graphite in ferritic-pearlitic matrix obtained in production conditions at KAW-MET Iron Foundry with the wire method used to vermicularize the material. The test samples were two plates cast in sand molds, of which one was given a flame-sprayed CuTi2Cr coat on one side. The operating performance of such model cast-iron heat exchangers, with and without CuTi2Cr coating, was tested on a set-up for determining the heat flow rate (thermal power) transferred by the heat exchanger to environment. The obtained results indicate that the value of the heat flow rate characterizing the CuTi2Cr-coated cast-iron heat exchanger was by 10% higher compared to the flow rate of heat conveyed to environment by the heat exchanger without coating.
应用铜合金涂层改善铸铁换热器的运行性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of Foundry Engineering
Archives of Foundry Engineering METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
1.10
自引率
16.70%
发文量
0
期刊介绍: Thematic scope includes scientific issues of foundry industry: Theoretical Aspects of Casting Processes, Innovative Foundry Technologies and Materials, Foundry Processes Computer Aiding, Mechanization, Automation and Robotics in Foundry, Transport Systems in Foundry, Castings Quality Management, Environmental Protection. Why subscribe and read
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信