Near-Optimal Search Time in \(\delta \)-Optimal Space, and Vice Versa

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Tomasz Kociumaka, Gonzalo Navarro, Francisco Olivares
{"title":"Near-Optimal Search Time in \\(\\delta \\)-Optimal Space, and Vice Versa","authors":"Tomasz Kociumaka,&nbsp;Gonzalo Navarro,&nbsp;Francisco Olivares","doi":"10.1007/s00453-023-01186-0","DOIUrl":null,"url":null,"abstract":"<div><p>Two recent lower bounds on the compressibility of repetitive sequences, <span>\\(\\delta \\le \\gamma \\)</span>, have received much attention. It has been shown that a length-<i>n</i> string <i>S</i> over an alphabet of size <span>\\(\\sigma \\)</span> can be represented within the optimal <span>\\(O(\\delta \\log \\tfrac{n\\log \\sigma }{\\delta \\log n})\\)</span> space, and further, that within that space one can find all the <i>occ</i> occurrences in <i>S</i> of any length-<i>m</i> pattern in time <span>\\(O(m\\log n + occ \\log ^\\epsilon n)\\)</span> for any constant <span>\\(\\epsilon &gt;0\\)</span>. Instead, the near-optimal search time <span>\\(O(m+({occ+1})\\log ^\\epsilon n)\\)</span> has been achieved only within <span>\\(O(\\gamma \\log \\frac{n}{\\gamma })\\)</span> space. Both results are based on considerably different locally consistent parsing techniques. The question of whether the better search time could be supported within the <span>\\(\\delta \\)</span>-optimal space remained open. In this paper, we prove that both techniques can indeed be combined to obtain the best of both worlds: <span>\\(O(m+({occ+1})\\log ^\\epsilon n)\\)</span> search time within <span>\\(O(\\delta \\log \\tfrac{n\\log \\sigma }{\\delta \\log n})\\)</span> space. Moreover, the number of occurrences can be computed in <span>\\(O(m+\\log ^{2+\\epsilon }n)\\)</span> time within <span>\\(O(\\delta \\log \\tfrac{n\\log \\sigma }{\\delta \\log n})\\)</span> space. We also show that an extra sublogarithmic factor on top of this space enables optimal <span>\\(O(m+occ)\\)</span> search time, whereas an extra logarithmic factor enables optimal <i>O</i>(<i>m</i>) counting time.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 4","pages":"1031 - 1056"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-023-01186-0","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Two recent lower bounds on the compressibility of repetitive sequences, \(\delta \le \gamma \), have received much attention. It has been shown that a length-n string S over an alphabet of size \(\sigma \) can be represented within the optimal \(O(\delta \log \tfrac{n\log \sigma }{\delta \log n})\) space, and further, that within that space one can find all the occ occurrences in S of any length-m pattern in time \(O(m\log n + occ \log ^\epsilon n)\) for any constant \(\epsilon >0\). Instead, the near-optimal search time \(O(m+({occ+1})\log ^\epsilon n)\) has been achieved only within \(O(\gamma \log \frac{n}{\gamma })\) space. Both results are based on considerably different locally consistent parsing techniques. The question of whether the better search time could be supported within the \(\delta \)-optimal space remained open. In this paper, we prove that both techniques can indeed be combined to obtain the best of both worlds: \(O(m+({occ+1})\log ^\epsilon n)\) search time within \(O(\delta \log \tfrac{n\log \sigma }{\delta \log n})\) space. Moreover, the number of occurrences can be computed in \(O(m+\log ^{2+\epsilon }n)\) time within \(O(\delta \log \tfrac{n\log \sigma }{\delta \log n})\) space. We also show that an extra sublogarithmic factor on top of this space enables optimal \(O(m+occ)\) search time, whereas an extra logarithmic factor enables optimal O(m) counting time.

最优空间中的近优搜索时间,反之亦然
最近,关于重复序列的可压缩性的两个下界,即 ( (delta \le \gamma \),受到了广泛关注。研究表明,在大小为 \(\sigma \) 的字母表上的长度为 n 的字符串 S 可以在最优的 \(O(\delta \log \tfrac{nlog \sigma }{\delta \log n})\)空间内表示、而且,在这个空间内,对于任何常数(\epsilon >;0\).相反,只有在 \(O(\gamma \log \frac{n}{\gamma })\)空间内才能达到接近最优的搜索时间(O(m+({occ+1})\log ^\epsilon n))。这两个结果都基于相当不同的局部一致解析技术。能否在最优空间内支持更好的搜索时间,这个问题仍然悬而未决。在本文中,我们证明了这两种技术确实可以结合起来以获得两全其美的结果:在(O(\delta \log \tfrac{n\log \sigma }{delta \log n})空间内获得(O(m+({occ+1})\log ^\epsilon n)搜索时间。此外,出现的次数可以在 \(O(m+\log ^{2+\epsilon }n)\) 空间内的 \(O(\delta \log \tfrac{n\log \sigma }{\delta \log n})\) 时间内计算出来。我们还证明,在这个空间之上的一个额外的次对数因子可以实现最优的(O(m+occ))搜索时间,而一个额外的对数因子可以实现最优的(O(m))计数时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algorithmica
Algorithmica 工程技术-计算机:软件工程
CiteScore
2.80
自引率
9.10%
发文量
158
审稿时长
12 months
期刊介绍: Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential. Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming. In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信