Impact of an Adjacent Surface on a Rectangular Overexpanded Supersonic Jet

IF 2 3区 工程技术 Q3 MECHANICS
Romain Gojon, Mihai Mihaescu
{"title":"Impact of an Adjacent Surface on a Rectangular Overexpanded Supersonic Jet","authors":"Romain Gojon,&nbsp;Mihai Mihaescu","doi":"10.1007/s10494-023-00505-3","DOIUrl":null,"url":null,"abstract":"<div><p>Flow and acoustic fields of a rectangular over-expanded supersonic jet interacting with an adjacent parallel plate are investigated using compressible Large Eddy Simulations (LES). The jet exits from a converging diverging rectangular nozzle of aspect ratio 2 with a design Mach number 1.5. Four distances (0 to 3 equivalent diameters) between the plate and the adjacent lip of the rectangular jet in the minor axis plane are studied. The geometry of the nozzle, the positions of the plate, and the exit conditions are identical to the ones of an experimental study. Snapshots and mean velocity fields are presented. Good agreement with the PIV experimental measurements is obtained. Previously, the corresponding free jet has been found to undergo a strong flapping motion in the minor axis plane due to screech. Here, it is shown that the intensity of the screech increases for certain distances from the plate and decreases for others, as compared to the corresponding free jet. Two points space-time cross correlations of the pressure along the jet’s shear-layers show, in two cases, an amplification of the aeroacoustic feedback mechanism leading to screech noise in the jet shear-layer closer to the plate. This amplification is due to acoustic waves impinging on the plate, and generating propagating waves back towards the jet, thus exciting the shear-layer at the screech frequency, around the tenth shock cell. Moreover, when the jet develops as a wall jet on the plate, the screech frequency and its associated flapping motion is canceled but a symmetrical oscillation of the jet at a lower frequency becomes dominant and radiates in the near acoustic field. This oscillation mode, as the ones associated with the screech tones for the other cases studied, can be explained by the use of a vortex sheet model of the ideally expanded equivalent planar jet.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"113 3","pages":"695 - 720"},"PeriodicalIF":2.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-023-00505-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Flow and acoustic fields of a rectangular over-expanded supersonic jet interacting with an adjacent parallel plate are investigated using compressible Large Eddy Simulations (LES). The jet exits from a converging diverging rectangular nozzle of aspect ratio 2 with a design Mach number 1.5. Four distances (0 to 3 equivalent diameters) between the plate and the adjacent lip of the rectangular jet in the minor axis plane are studied. The geometry of the nozzle, the positions of the plate, and the exit conditions are identical to the ones of an experimental study. Snapshots and mean velocity fields are presented. Good agreement with the PIV experimental measurements is obtained. Previously, the corresponding free jet has been found to undergo a strong flapping motion in the minor axis plane due to screech. Here, it is shown that the intensity of the screech increases for certain distances from the plate and decreases for others, as compared to the corresponding free jet. Two points space-time cross correlations of the pressure along the jet’s shear-layers show, in two cases, an amplification of the aeroacoustic feedback mechanism leading to screech noise in the jet shear-layer closer to the plate. This amplification is due to acoustic waves impinging on the plate, and generating propagating waves back towards the jet, thus exciting the shear-layer at the screech frequency, around the tenth shock cell. Moreover, when the jet develops as a wall jet on the plate, the screech frequency and its associated flapping motion is canceled but a symmetrical oscillation of the jet at a lower frequency becomes dominant and radiates in the near acoustic field. This oscillation mode, as the ones associated with the screech tones for the other cases studied, can be explained by the use of a vortex sheet model of the ideally expanded equivalent planar jet.

Abstract Image

Abstract Image

邻近表面对矩形超音速喷流的影响
利用可压缩大涡流模拟(LES)研究了矩形过扩张超音速射流与相邻平行板相互作用的流场和声场。射流从长径比为 2 的会聚发散矩形喷嘴喷出,设计马赫数为 1.5。研究了板和矩形喷流的相邻唇口在次轴平面上的四个距离(0 至 3 等效直径)。喷嘴的几何形状、板的位置和出口条件与实验研究的相同。结果显示了快照和平均速度场。结果与 PIV 实验测量结果吻合。在此之前,由于尖啸,相应的自由射流在小轴平面上发生了强烈的拍击运动。这里的研究表明,与相应的自由射流相比,尖啸的强度在距离板的某些距离上会增加,而在其他距离上会减弱。沿射流剪切层的压力的两点时空交叉相关性显示,在两种情况下,气声反馈机制被放大,导致在更靠近板的射流剪切层产生尖啸噪声。这种放大是由于声波撞击到板上,并产生向射流方向的传播波,从而在第 10 个冲击单元附近的尖啸频率上激发剪切层。此外,当射流在板上形成壁面射流时,尖啸频率及其相关的拍击运动会被取消,但射流会以较低的频率对称振荡,并在近声场中辐射。这种振荡模式与其他研究案例中与尖啸音有关的振荡模式一样,可以通过使用理想膨胀等效平面射流的涡片模型来解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信