{"title":"Study on mechanical properties of notched steel wire under tension and bending","authors":"","doi":"10.24425/ace.2022.143049","DOIUrl":null,"url":null,"abstract":": The fracture reason of steel wire cable is complex, and the corrosion and local bending effect of anchorage end of steel wire cable under tension are one of the main factors. Taking the steel wire of an arch bridge cable as the research object, the notch method was used to simulate the corrosion pits on the surface of the steel wire, and the tension and bending mechanical properties of the high strength notched steel wire were tested. The bending finite element model of the high strength steel wire was established by ANSYS WORKBENCH, and the tension and bending mechanical properties of the notched steel wire under different vertical loads and pretension were studied. The test and calculation results show that the test data are close to the finite element calculation results and the variation law is consistent. Under the same vertical load, the deformation of steel wire notch decreases with the increase of pretension; The stress at the bottom of the notch is the largest at 180 ◦ direction and the smallest at 90 ◦ direction of the vertical load.Under the same vertical load and pretension, the stress of spherical shape at the notch is the largest, followed by ellipsoid shape, and groove shape is the smallest, and there is a high stress zone at the edge of groove shape. When the pretension is applied, the initial stress increases with the increase of pretension, while the stress at the notch caused by bending decreases with the increase of pretension.","PeriodicalId":45753,"journal":{"name":"Archives of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/ace.2022.143049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
: The fracture reason of steel wire cable is complex, and the corrosion and local bending effect of anchorage end of steel wire cable under tension are one of the main factors. Taking the steel wire of an arch bridge cable as the research object, the notch method was used to simulate the corrosion pits on the surface of the steel wire, and the tension and bending mechanical properties of the high strength notched steel wire were tested. The bending finite element model of the high strength steel wire was established by ANSYS WORKBENCH, and the tension and bending mechanical properties of the notched steel wire under different vertical loads and pretension were studied. The test and calculation results show that the test data are close to the finite element calculation results and the variation law is consistent. Under the same vertical load, the deformation of steel wire notch decreases with the increase of pretension; The stress at the bottom of the notch is the largest at 180 ◦ direction and the smallest at 90 ◦ direction of the vertical load.Under the same vertical load and pretension, the stress of spherical shape at the notch is the largest, followed by ellipsoid shape, and groove shape is the smallest, and there is a high stress zone at the edge of groove shape. When the pretension is applied, the initial stress increases with the increase of pretension, while the stress at the notch caused by bending decreases with the increase of pretension.
期刊介绍:
ARCHIVES OF CIVIL ENGINEERING publish original papers of the theoretical, experimental, numerical and practical nature in the fields of structural mechanics, soil mechanics and foundations engineering, concrete, metal, timber and composite polymer structures, hydrotechnical structures, roads, railways and bridges, building services, building physics, management in construction, production of construction materials, construction of civil engineering structures, education of civil engineers.