THE DIFFERENCE ANALOGUE OF THE TUMURA–HAYMAN–CLUNIE THEOREM

IF 0.6 4区 数学 Q3 MATHEMATICS
MINGLIANG FANG, HUI LI, XIAO YAO
{"title":"THE DIFFERENCE ANALOGUE OF THE TUMURA–HAYMAN–CLUNIE THEOREM","authors":"MINGLIANG FANG, HUI LI, XIAO YAO","doi":"10.1017/s0004972723001089","DOIUrl":null,"url":null,"abstract":"Abstract We prove a difference analogue of the celebrated Tumura–Hayman–Clunie theorem. Let f be a transcendental entire function, let c be a nonzero constant and let n be a positive integer. If f and $\\Delta _c^n f$ omit zero in the whole complex plane, then either $f(z)=\\exp (h_1(z)+C_1 z)$ , where $h_1$ is an entire function of period c and $\\exp (C_1 c)\\neq 1$ , or $f(z)=\\exp (h_2(z)+C_2 z)$ , where $h_2$ is an entire function of period $2c$ and $C_2$ satisfies $$ \\begin{align*} \\bigg(\\frac{1+\\exp(C_2c)}{1-\\exp(C_2 c)}\\bigg)^{2n}=1. \\end{align*} $$","PeriodicalId":50720,"journal":{"name":"Bulletin of the Australian Mathematical Society","volume":"90 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Australian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0004972723001089","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract We prove a difference analogue of the celebrated Tumura–Hayman–Clunie theorem. Let f be a transcendental entire function, let c be a nonzero constant and let n be a positive integer. If f and $\Delta _c^n f$ omit zero in the whole complex plane, then either $f(z)=\exp (h_1(z)+C_1 z)$ , where $h_1$ is an entire function of period c and $\exp (C_1 c)\neq 1$ , or $f(z)=\exp (h_2(z)+C_2 z)$ , where $h_2$ is an entire function of period $2c$ and $C_2$ satisfies $$ \begin{align*} \bigg(\frac{1+\exp(C_2c)}{1-\exp(C_2 c)}\bigg)^{2n}=1. \end{align*} $$
tumura-hayman-clunie定理的差分模拟
摘要证明了著名的Tumura-Hayman-Clunie定理的一个差分类似。设f是一个超越整函数,设c是一个非零常数n是一个正整数。如果f和$\Delta _c^n f$在整个复平面上省略零,那么$f(z)=\exp (h_1(z)+C_1 z)$,其中$h_1$是周期为c和$\exp (C_1 c)\neq 1$的完整函数,或者$f(z)=\exp (h_2(z)+C_2 z)$,其中$h_2$是周期为$2c$和$C_2$的完整函数满足 $$ \begin{align*} \bigg(\frac{1+\exp(C_2c)}{1-\exp(C_2 c)}\bigg)^{2n}=1. \end{align*} $$
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
149
审稿时长
4-8 weeks
期刊介绍: Bulletin of the Australian Mathematical Society aims at quick publication of original research in all branches of mathematics. Papers are accepted only after peer review but editorial decisions on acceptance or otherwise are taken quickly, normally within a month of receipt of the paper. The Bulletin concentrates on presenting new and interesting results in a clear and attractive way. Published Bi-monthly Published for the Australian Mathematical Society
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信