Thin-Film Equations with Singular Potentials: An Alternative Solution to the Contact-Line Paradox

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Riccardo Durastanti, Lorenzo Giacomelli
{"title":"Thin-Film Equations with Singular Potentials: An Alternative Solution to the Contact-Line Paradox","authors":"Riccardo Durastanti, Lorenzo Giacomelli","doi":"10.1007/s00332-023-09982-2","DOIUrl":null,"url":null,"abstract":"Abstract In the regime of lubrication approximation, we look at spreading phenomena under the action of singular potentials of the form $$P(h)\\approx h^{1-m}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>P</mml:mi> <mml:mrow> <mml:mo>(</mml:mo> <mml:mi>h</mml:mi> <mml:mo>)</mml:mo> </mml:mrow> <mml:mo>≈</mml:mo> <mml:msup> <mml:mi>h</mml:mi> <mml:mrow> <mml:mn>1</mml:mn> <mml:mo>-</mml:mo> <mml:mi>m</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> </mml:math> as $$h\\rightarrow 0^+$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>h</mml:mi> <mml:mo>→</mml:mo> <mml:msup> <mml:mn>0</mml:mn> <mml:mo>+</mml:mo> </mml:msup> </mml:mrow> </mml:math> with $$m>1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> , modeling repulsion between the liquid–gas interface and the substrate. We assume zero slippage at the contact line. Based on formal analysis arguments, we report that for any $$m>1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and any value of the speed (both positive and negative) there exists a three-parameter, hence generic, family of fronts (i.e., traveling-wave solutions with a contact line). A two-parameter family of advancing “linear-log” fronts also exists, having a logarithmically corrected linear behavior in the liquid bulk. All these fronts have finite rate of dissipation, indicating that singular potentials stand as an alternative solution to the contact-line paradox. In agreement with steady states, fronts have microscopic contact angle equal to $$\\pi /2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>π</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> for all $$m>1$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>></mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:math> and finite energy for all $$m<3$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo><</mml:mo> <mml:mn>3</mml:mn> </mml:mrow> </mml:math> . We also propose a selection criterion for the fronts, based on thermodynamically consistent contact-line conditions modeling friction at the contact line. So as contact-angle conditions do in the case of slippage models, this criterion selects a unique (up to translation) linear-log front for each positive speed. Numerical evidence suggests that, fixed the speed and the frictional coefficient, its shape depends on the spreading coefficient, with steeper fronts in partial wetting and a more prominent precursor region in dry complete wetting.","PeriodicalId":50111,"journal":{"name":"Journal of Nonlinear Science","volume":"46 1 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00332-023-09982-2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In the regime of lubrication approximation, we look at spreading phenomena under the action of singular potentials of the form $$P(h)\approx h^{1-m}$$ P ( h ) h 1 - m as $$h\rightarrow 0^+$$ h 0 + with $$m>1$$ m > 1 , modeling repulsion between the liquid–gas interface and the substrate. We assume zero slippage at the contact line. Based on formal analysis arguments, we report that for any $$m>1$$ m > 1 and any value of the speed (both positive and negative) there exists a three-parameter, hence generic, family of fronts (i.e., traveling-wave solutions with a contact line). A two-parameter family of advancing “linear-log” fronts also exists, having a logarithmically corrected linear behavior in the liquid bulk. All these fronts have finite rate of dissipation, indicating that singular potentials stand as an alternative solution to the contact-line paradox. In agreement with steady states, fronts have microscopic contact angle equal to $$\pi /2$$ π / 2 for all $$m>1$$ m > 1 and finite energy for all $$m<3$$ m < 3 . We also propose a selection criterion for the fronts, based on thermodynamically consistent contact-line conditions modeling friction at the contact line. So as contact-angle conditions do in the case of slippage models, this criterion selects a unique (up to translation) linear-log front for each positive speed. Numerical evidence suggests that, fixed the speed and the frictional coefficient, its shape depends on the spreading coefficient, with steeper fronts in partial wetting and a more prominent precursor region in dry complete wetting.

Abstract Image

具有奇异势的薄膜方程:接触线悖论的另一种解
在润滑近似下,我们研究了奇异势作用下的扩散现象,其形式为$$P(h)\approx h^{1-m}$$ P (h)≈h1 - m: $$h\rightarrow 0^+$$ h→0 +,$$m>1$$ m &gt;1、模拟液气界面与衬底之间的斥力。我们假设接触线上的滑动为零。基于形式分析论证,我们报告了对于任意$$m>1$$ m &gt;1和速度的任何值(正负)都存在一个三参数,因此,一般的锋面族(即具有接触线的行波解)。一个推进的“线性-对数”锋面的双参数族也存在,在液体体中具有对数校正的线性行为。所有这些锋面的耗散率都是有限的,这表明奇异势可以作为接触线悖论的另一种解决办法。与稳态一致,对于所有$$m>1$$ m &gt,锋面的微观接触角等于$$\pi /2$$ π / 2;1和有限能量的所有$$m<3$$ m &lt;3 .我们还提出了一个选择标准的锋面,基于热力学一致的接触线条件,模拟在接触线上的摩擦。因此,就像滑移模型中的接触角条件一样,该准则为每个正速度选择一个唯一的(直到平移)线性对数前。数值证据表明,在一定的速度和摩擦系数下,其形状取决于扩散系数,部分润湿时锋面更陡,干燥完全润湿时前驱区更突出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.00
自引率
3.30%
发文量
87
审稿时长
4.5 months
期刊介绍: The mission of the Journal of Nonlinear Science is to publish papers that augment the fundamental ways we describe, model, and predict nonlinear phenomena. Papers should make an original contribution to at least one technical area and should in addition illuminate issues beyond that area''s boundaries. Even excellent papers in a narrow field of interest are not appropriate for the journal. Papers can be oriented toward theory, experimentation, algorithms, numerical simulations, or applications as long as the work is creative and sound. Excessively theoretical work in which the application to natural phenomena is not apparent (at least through similar techniques) or in which the development of fundamental methodologies is not present is probably not appropriate. In turn, papers oriented toward experimentation, numerical simulations, or applications must not simply report results without an indication of what a theoretical explanation might be. All papers should be submitted in English and must meet common standards of usage and grammar. In addition, because ours is a multidisciplinary subject, at minimum the introduction to the paper should be readable to a broad range of scientists and not only to specialists in the subject area. The scientific importance of the paper and its conclusions should be made clear in the introduction-this means that not only should the problem you study be presented, but its historical background, its relevance to science and technology, the specific phenomena it can be used to describe or investigate, and the outstanding open issues related to it should be explained. Failure to achieve this could disqualify the paper.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信