{"title":"A Deterministic Parallel Reduction from Weighted Matroid Intersection Search to Decision","authors":"Sumanta Ghosh, Rohit Gurjar, Roshan Raj","doi":"10.1007/s00453-023-01184-2","DOIUrl":null,"url":null,"abstract":"<div><p>Given two matroids on the same ground set, the matroid intersection problem asks for a common base, i.e., a subset of the ground set that is a base in both the matroids. The weighted version of the problem asks for a common base with maximum weight.\n In the case of linearly representable matroids, the weighted version is known to have a randomized parallel (RNC) algorithm based on the isolation lemma, when the given weights are polynomially bounded (Narayanan et al. in SIAM J Comput 23(2): 387–397, 1994). Finding a deterministic parallel (NC) algorithm, even for the unweighted decision question, has been a long-standing open question. The above RNC algorithm can be viewed as a randomized reduction from weighted search to weighted decision, which works for arbitrary matroids. We derandomize this reduction, i.e., we give an NC algorithm for weighted matroid intersection search using oracle access to its decision version.</p></div>","PeriodicalId":50824,"journal":{"name":"Algorithmica","volume":"86 4","pages":"1057 - 1079"},"PeriodicalIF":0.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algorithmica","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s00453-023-01184-2","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Given two matroids on the same ground set, the matroid intersection problem asks for a common base, i.e., a subset of the ground set that is a base in both the matroids. The weighted version of the problem asks for a common base with maximum weight.
In the case of linearly representable matroids, the weighted version is known to have a randomized parallel (RNC) algorithm based on the isolation lemma, when the given weights are polynomially bounded (Narayanan et al. in SIAM J Comput 23(2): 387–397, 1994). Finding a deterministic parallel (NC) algorithm, even for the unweighted decision question, has been a long-standing open question. The above RNC algorithm can be viewed as a randomized reduction from weighted search to weighted decision, which works for arbitrary matroids. We derandomize this reduction, i.e., we give an NC algorithm for weighted matroid intersection search using oracle access to its decision version.
期刊介绍:
Algorithmica is an international journal which publishes theoretical papers on algorithms that address problems arising in practical areas, and experimental papers of general appeal for practical importance or techniques. The development of algorithms is an integral part of computer science. The increasing complexity and scope of computer applications makes the design of efficient algorithms essential.
Algorithmica covers algorithms in applied areas such as: VLSI, distributed computing, parallel processing, automated design, robotics, graphics, data base design, software tools, as well as algorithms in fundamental areas such as sorting, searching, data structures, computational geometry, and linear programming.
In addition, the journal features two special sections: Application Experience, presenting findings obtained from applications of theoretical results to practical situations, and Problems, offering short papers presenting problems on selected topics of computer science.