Olumide S. Daramola, Navjot Singh, Joseph E. Iboyi, Pratap Devkota
{"title":"Growth and Yield Response of Peanut to Simulated Drift of Glufosinate at Vegetative and Reproductive Growth Stages","authors":"Olumide S. Daramola, Navjot Singh, Joseph E. Iboyi, Pratap Devkota","doi":"10.1017/wet.2023.81","DOIUrl":null,"url":null,"abstract":"Abstract The increased incidence of glyphosate-resistant weeds has led to an exponential increase in the use of glufosinate in glufosinate-resistant corn, cotton, and soybean. Field experiments were conducted in 2021 and 2022 to evaluate peanut response to glufosinate at 25 and 60 d after planting, corresponding to vegetative (V3) and reproductive (R4) growth stages, at 1.2, 4.7, 18.9, 75.5, and 302 g ai ha -1 representing 1/514 to 1/2 of the labeled rate of 604 g ha -1 . Peanut injury and canopy and yield reductions from glufosinate were <10% when applied at 1.2, 4.7, and 18.9 g ha -1 . However, at 75.5 and 302 g ha -1 peanut injury ranged from 24% to 72% for V3 exposure timing and 33% to 54% for R4 exposure timing. Similarly, glufosinate at 75.5 and 302 g ha -1 reduced peanut canopy width by 10% to 23% for V3 exposure timing and 43% to 57% for R4 exposure timing. Averaged across exposure timing, peanut yield was reduced by 15% and 61% at 75.5 and 302 g ha -1 , respectively. Averaged across rates, peanut yield reduction was 18% for V3 exposure timing, with glufosinate at 298 g ha -1 required to cause an estimated 50% reduction in yield. For R3 exposure timing, peanut yield reduction was 20%, with glufosinate at 243 g ha -1 required to cause an estimated 50% reduction in yield. There was no difference in Normalized Difference Vegetative Index (NDVI) between untreated plants and peanut exposed to glufosinate at 1.2, 4.7, and 18.9 g ha -1 . However, peanut exposed to glufosinate at 75.5 and 302 g ha -1 were distinguished from untreated plants with lower NDVI values. Based on Pearson’s Rho correlation coefficient, the best timing for assessing potential yield reduction based on injury was between 2 and 4 wk after treatment.","PeriodicalId":23710,"journal":{"name":"Weed Technology","volume":"7 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Weed Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/wet.2023.81","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The increased incidence of glyphosate-resistant weeds has led to an exponential increase in the use of glufosinate in glufosinate-resistant corn, cotton, and soybean. Field experiments were conducted in 2021 and 2022 to evaluate peanut response to glufosinate at 25 and 60 d after planting, corresponding to vegetative (V3) and reproductive (R4) growth stages, at 1.2, 4.7, 18.9, 75.5, and 302 g ai ha -1 representing 1/514 to 1/2 of the labeled rate of 604 g ha -1 . Peanut injury and canopy and yield reductions from glufosinate were <10% when applied at 1.2, 4.7, and 18.9 g ha -1 . However, at 75.5 and 302 g ha -1 peanut injury ranged from 24% to 72% for V3 exposure timing and 33% to 54% for R4 exposure timing. Similarly, glufosinate at 75.5 and 302 g ha -1 reduced peanut canopy width by 10% to 23% for V3 exposure timing and 43% to 57% for R4 exposure timing. Averaged across exposure timing, peanut yield was reduced by 15% and 61% at 75.5 and 302 g ha -1 , respectively. Averaged across rates, peanut yield reduction was 18% for V3 exposure timing, with glufosinate at 298 g ha -1 required to cause an estimated 50% reduction in yield. For R3 exposure timing, peanut yield reduction was 20%, with glufosinate at 243 g ha -1 required to cause an estimated 50% reduction in yield. There was no difference in Normalized Difference Vegetative Index (NDVI) between untreated plants and peanut exposed to glufosinate at 1.2, 4.7, and 18.9 g ha -1 . However, peanut exposed to glufosinate at 75.5 and 302 g ha -1 were distinguished from untreated plants with lower NDVI values. Based on Pearson’s Rho correlation coefficient, the best timing for assessing potential yield reduction based on injury was between 2 and 4 wk after treatment.
抗草甘膦杂草发病率的增加导致抗草甘膦玉米、棉花和大豆中草甘膦的使用呈指数增长。在2021年和2022年进行了田间试验,以评估花生在种植后25和60 d对草铵膦的反应,对应于营养(V3)和生殖(R4)生长阶段,分别为1.2、4.7、18.9、75.5和302 g ha -1,占604 g ha -1标记率的1/514至1/2。施用1.2、4.7和18.9 g / ha -1时,草甘膦对花生的伤害、冠层和产量的减少均为10%。然而,在75.5和302 g ha -1时,V3暴露时间的花生损伤为24% ~ 72%,R4暴露时间为33% ~ 54%。同样,75.5 g和302 g ha -1的草铵膦使V3暴露时间的花生冠层宽度减少10%至23%,R4暴露时间的花生冠层宽度减少43%至57%。处理75.5 g ha -1和302 g ha -1时,花生产量分别降低15%和61%。平均而言,在V3暴露的时间内,花生产量减少18%,草铵膦用量为298 g ha -1,估计会导致产量减少50%。对于R3暴露时间,花生产量减少20%,草铵膦用量为243 g ha -1,估计产量减少50%。未处理花生与1.2、4.7和18.9 g / ha -1草铵膦处理花生的归一化差异营养指数(NDVI)无显著差异。然而,75.5和302 g ha -1草铵膦处理花生NDVI值较低,与未处理花生不同。根据Pearson’s Rho相关系数,评估基于伤害的潜在产量减少的最佳时机是在治疗后2 - 4周。
期刊介绍:
Weed Technology publishes original research and scholarship in the form of peer-reviewed articles focused on understanding how weeds are managed.
The journal focuses on:
- Applied aspects concerning the management of weeds in agricultural systems
- Herbicides used to manage undesired vegetation, weed biology and control
- Weed/crop management systems
- Reports of new weed problems
-New technologies for weed management and special articles emphasizing technology transfer to improve weed control
-Articles dealing with plant growth regulators and management of undesired plant growth may also be accepted, provided there is clear relevance to weed science technology, e.g., turfgrass or woody plant management along rights-of-way, vegetation management in forest, aquatic, or other non-crop situations.
-Surveys, education, and extension topics related to weeds will also be considered