Tate–Shafarevich groups and algebras

IF 0.5 2区 数学 Q3 MATHEMATICS
Boris Kunyavski, Vadim Z. Ostapenko
{"title":"Tate–Shafarevich groups and algebras","authors":"Boris Kunyavski, Vadim Z. Ostapenko","doi":"10.1142/s0218196723500364","DOIUrl":null,"url":null,"abstract":"The Tate–Shafarevich set of a group [Formula: see text] defined by Takashi Ono coincides, in the case where [Formula: see text] is finite, with the group of outer class-preserving automorphisms of [Formula: see text] introduced by Burnside. We consider analogs of this important group-theoretic object for Lie algebras and associative algebras and establish some new structure properties thereof. We also discuss open problems and eventual generalizations to other algebraic structures.","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":"24 1","pages":"0"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218196723500364","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

The Tate–Shafarevich set of a group [Formula: see text] defined by Takashi Ono coincides, in the case where [Formula: see text] is finite, with the group of outer class-preserving automorphisms of [Formula: see text] introduced by Burnside. We consider analogs of this important group-theoretic object for Lie algebras and associative algebras and establish some new structure properties thereof. We also discuss open problems and eventual generalizations to other algebraic structures.
Tate-Shafarevich群与代数
Takashi Ono定义的群[公式:见文]的Tate-Shafarevich集合,在[公式:见文]是有限的情况下,与Burnside引入的[公式:见文]的外保类自同构群一致。我们考虑了李代数和结合代数中这一重要群论对象的类似物,并建立了它们的一些新的结构性质。我们也讨论开放问题和最终推广到其他代数结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信