SENTIMENT ANALYSIS OF MYPERTAMINA APPLICATION USING SUPPORT VECTOR MACHINE AND NAÏVE BAYES ALGORITHMS

Ongki Sopie Simbolon, Murni Esterlita Manullang, Stevin Alvarez, Lolo Frans M. Brutu, Evta Indra
{"title":"SENTIMENT ANALYSIS OF MYPERTAMINA APPLICATION USING SUPPORT VECTOR MACHINE AND NAÏVE BAYES ALGORITHMS","authors":"Ongki Sopie Simbolon, Murni Esterlita Manullang, Stevin Alvarez, Lolo Frans M. Brutu, Evta Indra","doi":"10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4078","DOIUrl":null,"url":null,"abstract":"In line with the needs of the community and the progress of the times in the advanced field of fintech, cash payments are currently considered insecure as well as ineffective and efficient. To run a non-cash or cashless transaction program currently run by the government, PT. Pertamina invites the public to use E-Payment from the My Pertamina application in collaboration with LinkAja. In this study, the sentiments of MyPertamina application users will be analyzed based on reviews on the Google Play Store. Review data will be analyzed to determine whether the review has positive, negative, or neutral sentiments. The data analysis stage is text preprocessing to change uppercase to lowercase, clearing text, separating text, taking important words, changing essential words, and labeling data into positive, negative, and neutral classes. As well as the classification and evaluation of results. This study used the Support Vector Machine (SVM) and Naïve Bayes classification methods. To evaluate the results, the confusion matrix was used to test the accuracy, precision, recall, and F1 score value. The classification results obtained the highest accuracy value for the Support Vector Machine (SVM) method, which had accuracy (68.50%), precision (70.00%), recall (69.70%), and F1 score (68.46%). Meanwhile, the Naïve Bayes method has performance with accuracy (63.00%), precision (63.90%), recall (61.34%), and F1 score (59.55%).","PeriodicalId":499639,"journal":{"name":"Jusikom : Jurnal Sistem Informasi Ilmu Komputer","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jusikom : Jurnal Sistem Informasi Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34012/jurnalsisteminformasidanilmukomputer.v7i1.4078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In line with the needs of the community and the progress of the times in the advanced field of fintech, cash payments are currently considered insecure as well as ineffective and efficient. To run a non-cash or cashless transaction program currently run by the government, PT. Pertamina invites the public to use E-Payment from the My Pertamina application in collaboration with LinkAja. In this study, the sentiments of MyPertamina application users will be analyzed based on reviews on the Google Play Store. Review data will be analyzed to determine whether the review has positive, negative, or neutral sentiments. The data analysis stage is text preprocessing to change uppercase to lowercase, clearing text, separating text, taking important words, changing essential words, and labeling data into positive, negative, and neutral classes. As well as the classification and evaluation of results. This study used the Support Vector Machine (SVM) and Naïve Bayes classification methods. To evaluate the results, the confusion matrix was used to test the accuracy, precision, recall, and F1 score value. The classification results obtained the highest accuracy value for the Support Vector Machine (SVM) method, which had accuracy (68.50%), precision (70.00%), recall (69.70%), and F1 score (68.46%). Meanwhile, the Naïve Bayes method has performance with accuracy (63.00%), precision (63.90%), recall (61.34%), and F1 score (59.55%).
基于支持向量机和naÏve贝叶斯算法的mypertamina应用情感分析
根据社会的需求和金融科技先进领域的时代进步,现金支付目前被认为是不安全的,而且效率低下。为了运行目前由政府运行的非现金或无现金交易计划,PT. Pertamina邀请公众使用My Pertamina应用程序与LinkAja合作的电子支付。在本研究中,MyPertamina应用程序用户的情绪将根据谷歌Play商店的评论进行分析。将对评论数据进行分析,以确定评论是否有积极、消极或中性的情绪。数据分析阶段是文本预处理,包括将大写变为小写、清除文本、分隔文本、获取重要单词、更改基本单词以及将数据标记为积极类、消极类和中性类。以及对结果的分类和评价。本研究采用支持向量机(SVM)和Naïve贝叶斯分类方法。为了评价结果,我们使用混淆矩阵来测试准确率、精密度、召回率和F1得分值。分类结果中,支持向量机(SVM)方法准确率最高,准确率为68.50%,精密度为70.00%,召回率为69.70%,F1评分为68.46%。同时,Naïve贝叶斯方法具有准确率(63.00%)、精密度(63.90%)、召回率(61.34%)和F1分数(59.55%)的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信