Experimental Determination of Material Boundary Conditions for Computer Simulation of Sheet Metal Deep Drawing Processes

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
Tomasz Miłek
{"title":"Experimental Determination of Material Boundary Conditions for Computer Simulation of Sheet Metal Deep Drawing Processes","authors":"Tomasz Miłek","doi":"10.12913/22998624/172364","DOIUrl":null,"url":null,"abstract":"In solving technological problems related to sheet metal deep drawing with the use of computer tools, the key issue is still the correct determination and entering of boundary conditions to FEM-based software. The procedure for preparing input data for modelling such processes includes geometric data (drawing of tools and material), technological parameters along with the contact conditions between the workpiece and the tools (friction model and type of lubricant) and material properties, in which work-hardening curves are of particular importance. In typical material databases of FEM-based software and designed for computer modelling of deep drawing processes, the properties of only a small number of material grades are available, and commercial software producers charge additional fees for each additional quantity. Those properties that are already in the database are usually devoid of basic information, e.g. related to the state of the material (material after recrystallization, annealing, cold working has different properties). In paper, experimental tests were carried out to determine flow curves based on cold tensile curves for flat samples made of EN-AW 1050A aluminium, Cu-ETP copper, CuZn37 brass and S235JRG2 steel. The investigation used a universal testing machine with a 20 kN pressing force, equipped with specialized Test & Motion software for measuring forces and displacements. It was calibrated and satisfies the metrological requirements for class 0.5. A comparative analysis of the curves determined by the analytical method was carried out. The material models obtained in the experimental tests were used in the computer simulation of the deep drawing processes of cylindrical drawpieces in the ABAQUS software. The results were experimentally verified in terms of comparing the changes in the pressing forces as a function of the displacement of the punch. The re-sults obtained in the research can be used in industrial practice for computer-aided design of cold-deep drawing processes for drawpieces of various shapes from the discussed materials.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/172364","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In solving technological problems related to sheet metal deep drawing with the use of computer tools, the key issue is still the correct determination and entering of boundary conditions to FEM-based software. The procedure for preparing input data for modelling such processes includes geometric data (drawing of tools and material), technological parameters along with the contact conditions between the workpiece and the tools (friction model and type of lubricant) and material properties, in which work-hardening curves are of particular importance. In typical material databases of FEM-based software and designed for computer modelling of deep drawing processes, the properties of only a small number of material grades are available, and commercial software producers charge additional fees for each additional quantity. Those properties that are already in the database are usually devoid of basic information, e.g. related to the state of the material (material after recrystallization, annealing, cold working has different properties). In paper, experimental tests were carried out to determine flow curves based on cold tensile curves for flat samples made of EN-AW 1050A aluminium, Cu-ETP copper, CuZn37 brass and S235JRG2 steel. The investigation used a universal testing machine with a 20 kN pressing force, equipped with specialized Test & Motion software for measuring forces and displacements. It was calibrated and satisfies the metrological requirements for class 0.5. A comparative analysis of the curves determined by the analytical method was carried out. The material models obtained in the experimental tests were used in the computer simulation of the deep drawing processes of cylindrical drawpieces in the ABAQUS software. The results were experimentally verified in terms of comparing the changes in the pressing forces as a function of the displacement of the punch. The re-sults obtained in the research can be used in industrial practice for computer-aided design of cold-deep drawing processes for drawpieces of various shapes from the discussed materials.
板料拉深过程计算机模拟中材料边界条件的实验确定
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信