Industrial Application of Surface Crack Detection in Sheet Metal Stamping Using Shift-and-Add Speckle Imaging

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
Sławomir Świłło, Robert Cacko
{"title":"Industrial Application of Surface Crack Detection in Sheet Metal Stamping Using Shift-and-Add Speckle Imaging","authors":"Sławomir Świłło, Robert Cacko","doi":"10.12913/22998624/171811","DOIUrl":null,"url":null,"abstract":"The sheet metal surface crack detection during manufacturing is an essential issue because of both the product quality and process productivity. Development of solutions to eliminate defective products during the metal forming process is crucial for the smooth production and for developing an appropriate tool geometry in the initial phase of the process. Currently, the methods of surface crack detection used in the industry are mostly related to visual inspection. These are methods that require operators of industrial facilities considerable attention and effort to capture emerging discontinuities on the sheet metal surface. Also, this situation results increase in the duration of the specific operations of stamping and significantly reduces productivity. Therefore, an industrial application of a non-contact laser technique that simultaneously provides the results of the speckle imaging is presented. The authors demonstrate a specially designed machine vision system along with experimental tools for the stamping operation. Proposed solution uses the phenomenon of speckle pattern that appears in the image of the investigated sheet surface produced by the laser beam emission. In this method, coherent laser light is emitted to the surface, where a speckle pattern is generated due to scatter reflection from the sheet metal surface and then, shift-and-add technique and image processing is applied. The proposed measurement technique consists, initially, of making a sequence of images of the tested object for the moving surface of the sheet. Secondly, the object’s displacement quantity in each image is determined, and the position is corrected. The test object in each image is moved to the starting position, and all images are superimposed. It allows to obtain a high-quality image with visible surface defects. Finally, the dynamically changing speckle pattern intensity is evaluated using Gaussian-of-Laplacian edge detection to investigate a surface crack location due to the surface discontinues and light scattering. This process is recommended for machine vision imaging of distant objects, which works well in industrial conditions as well as online analysis. Also, from the speckle size measurement, an experimental procedure is employed to verify the best condition for vision system resolution.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/171811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The sheet metal surface crack detection during manufacturing is an essential issue because of both the product quality and process productivity. Development of solutions to eliminate defective products during the metal forming process is crucial for the smooth production and for developing an appropriate tool geometry in the initial phase of the process. Currently, the methods of surface crack detection used in the industry are mostly related to visual inspection. These are methods that require operators of industrial facilities considerable attention and effort to capture emerging discontinuities on the sheet metal surface. Also, this situation results increase in the duration of the specific operations of stamping and significantly reduces productivity. Therefore, an industrial application of a non-contact laser technique that simultaneously provides the results of the speckle imaging is presented. The authors demonstrate a specially designed machine vision system along with experimental tools for the stamping operation. Proposed solution uses the phenomenon of speckle pattern that appears in the image of the investigated sheet surface produced by the laser beam emission. In this method, coherent laser light is emitted to the surface, where a speckle pattern is generated due to scatter reflection from the sheet metal surface and then, shift-and-add technique and image processing is applied. The proposed measurement technique consists, initially, of making a sequence of images of the tested object for the moving surface of the sheet. Secondly, the object’s displacement quantity in each image is determined, and the position is corrected. The test object in each image is moved to the starting position, and all images are superimposed. It allows to obtain a high-quality image with visible surface defects. Finally, the dynamically changing speckle pattern intensity is evaluated using Gaussian-of-Laplacian edge detection to investigate a surface crack location due to the surface discontinues and light scattering. This process is recommended for machine vision imaging of distant objects, which works well in industrial conditions as well as online analysis. Also, from the speckle size measurement, an experimental procedure is employed to verify the best condition for vision system resolution.
漂移加散斑成像在钣金冲压表面裂纹检测中的工业应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信