Application of Particle Filter in Path-loss Modelling

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
Piotr Wójcicki, Tomasz Zientarski, Sławomir Przyłucki
{"title":"Application of Particle Filter in Path-loss Modelling","authors":"Piotr Wójcicki, Tomasz Zientarski, Sławomir Przyłucki","doi":"10.12913/22998624/172407","DOIUrl":null,"url":null,"abstract":"The article presents the dynamic estimation method of the path loss exponent parameter in the function of the distance based on the conducted measurements. A specific feature of this solution is its suitability for distance estimation on devices which are characterised by a small amount of resources. The presented method allows to provide an acceptable precision of distance estimation while using a relatively small measurement set. For this purpose, real RSSI (Received Signal Strength Indicator) measurements were used and estimation of the path-loss exponent was performed with the use of a Bayesian particle filter. The article, apart from a detailed demonstration of the algorithms, presents the results of the sensitivity analysis of this method to change the number of inserted particles and of the repetitions of calculations needed to estimate the path loss exponent. Additionally, the results of the model stability study on the size change of the experimental dataset RSSI are presented. The properties and accuracy of the proposed method are verified based on a set of actual measurement data. All the obtained results indicate the utility of the Bayesian filtering method for effective estimation of the path loss exponent and confirm the possibility of using the described method in systems with a limited amount of computing resources.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/172407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The article presents the dynamic estimation method of the path loss exponent parameter in the function of the distance based on the conducted measurements. A specific feature of this solution is its suitability for distance estimation on devices which are characterised by a small amount of resources. The presented method allows to provide an acceptable precision of distance estimation while using a relatively small measurement set. For this purpose, real RSSI (Received Signal Strength Indicator) measurements were used and estimation of the path-loss exponent was performed with the use of a Bayesian particle filter. The article, apart from a detailed demonstration of the algorithms, presents the results of the sensitivity analysis of this method to change the number of inserted particles and of the repetitions of calculations needed to estimate the path loss exponent. Additionally, the results of the model stability study on the size change of the experimental dataset RSSI are presented. The properties and accuracy of the proposed method are verified based on a set of actual measurement data. All the obtained results indicate the utility of the Bayesian filtering method for effective estimation of the path loss exponent and confirm the possibility of using the described method in systems with a limited amount of computing resources.
粒子滤波在路径损失建模中的应用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信