Improve Single Point Incremental Forming Process Performance Using Primary Stretching Forming Process

IF 1 Q3 ENGINEERING, MULTIDISCIPLINARY
Aqeel Sabree Bedan, Alaa Hassan Shabeeb, Emad Ali Hussein
{"title":"Improve Single Point Incremental Forming Process Performance Using Primary Stretching Forming Process","authors":"Aqeel Sabree Bedan, Alaa Hassan Shabeeb, Emad Ali Hussein","doi":"10.12913/22998624/172907","DOIUrl":null,"url":null,"abstract":"Incremental forming (IF) is one of the sheet metals forming technique where is a sheet formed into a final work - piece using a series of small incremental sheet deformations. In Incremental sheet metal forming process, one of the important steps is to produce the forming part with acceptable performance such as product accurate and uniform thickness distribution with a homogenous grain distribution that consider as the main challenge of incremental sheet metal forming process. This work is carried out to find the best method to control the product performance of the final parts using a new method of applying a primary stretching forming process with a hemispherical forming tool followed by single point forming SPIF. Different primary forming depth (10, 20, 30 and 40 mm) were applied to find their effect on the forming behavior of the final product and compare them to the single point forming prod - uct without using a primary forming process. The experimental results showed the improvement in microstructure by applying SPIF process after primary stretching, with grain size of 36 µm at 40 mm forming depth as compared to 52 µm when using pure SPIF, a twining effects presence in both cases. A high improvement with a minimum di - mension deviation of (6%) with respect to the forming process in single point incremental forming process without a primary forming process that result forming deviation equal to (11.6%) with respect to the desired design. The thickness distribution of the final product also improved by applying the primary stretching forming process before the SPIF process reaches to (6.9%, 9.1%, 14.9% and 21.5%) at forming depth (10, 20, 30 and 40) mm, respectively.","PeriodicalId":46357,"journal":{"name":"Advances in Science and Technology-Research Journal","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Science and Technology-Research Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12913/22998624/172907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Incremental forming (IF) is one of the sheet metals forming technique where is a sheet formed into a final work - piece using a series of small incremental sheet deformations. In Incremental sheet metal forming process, one of the important steps is to produce the forming part with acceptable performance such as product accurate and uniform thickness distribution with a homogenous grain distribution that consider as the main challenge of incremental sheet metal forming process. This work is carried out to find the best method to control the product performance of the final parts using a new method of applying a primary stretching forming process with a hemispherical forming tool followed by single point forming SPIF. Different primary forming depth (10, 20, 30 and 40 mm) were applied to find their effect on the forming behavior of the final product and compare them to the single point forming prod - uct without using a primary forming process. The experimental results showed the improvement in microstructure by applying SPIF process after primary stretching, with grain size of 36 µm at 40 mm forming depth as compared to 52 µm when using pure SPIF, a twining effects presence in both cases. A high improvement with a minimum di - mension deviation of (6%) with respect to the forming process in single point incremental forming process without a primary forming process that result forming deviation equal to (11.6%) with respect to the desired design. The thickness distribution of the final product also improved by applying the primary stretching forming process before the SPIF process reaches to (6.9%, 9.1%, 14.9% and 21.5%) at forming depth (10, 20, 30 and 40) mm, respectively.
采用初级拉伸成形工艺改进单点增量成形工艺性能
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in Science and Technology-Research Journal
Advances in Science and Technology-Research Journal ENGINEERING, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
27.30%
发文量
152
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信