Shiqing Zhang, Mahmood Naderan-Tahan, Magnus Jahre, Lieven Eeckhout
{"title":"Characterizing Multi-Chip GPU Data Sharing","authors":"Shiqing Zhang, Mahmood Naderan-Tahan, Magnus Jahre, Lieven Eeckhout","doi":"10.1145/3629521","DOIUrl":null,"url":null,"abstract":"Multi-chip GPU systems are critical to scale performance beyond a single GPU chip for a wide variety of important emerging applications. A key challenge for multi-chip GPUs though is how to overcome the bandwidth gap between inter-chip and intra-chip communication. Accesses to shared data, i.e., data accessed by multiple chips, pose a major performance challenge as they incur remote memory accesses possibly congesting the inter-chip links and degrading overall system performance. This paper characterizes the shared data set in multi-chip GPUs in terms of (1) truly versus falsely shared data, (2) how the shared data set scales with input size, (3) along which dimensions the shared data set scales, and (4) how sensitive the shared data set is with respect to the input’s characteristics, i.e., node degree and connectivity in graph workloads. We observe significant variety in scaling behavior across workloads: some workloads feature a shared data set that scales linearly with input size, while others feature sublinear scaling (following a \\(\\sqrt {2} \\) or \\(\\sqrt [3]{2} \\) relationship). We further demonstrate how the shared data set affects the optimum last-level cache organization (memory-side versus SM-side) in multi-chip GPUs, as well as optimum memory page allocation and thread scheduling policy. Sensitivity analyses demonstrate the insights across the broad design space.","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"33 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3629521","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Multi-chip GPU systems are critical to scale performance beyond a single GPU chip for a wide variety of important emerging applications. A key challenge for multi-chip GPUs though is how to overcome the bandwidth gap between inter-chip and intra-chip communication. Accesses to shared data, i.e., data accessed by multiple chips, pose a major performance challenge as they incur remote memory accesses possibly congesting the inter-chip links and degrading overall system performance. This paper characterizes the shared data set in multi-chip GPUs in terms of (1) truly versus falsely shared data, (2) how the shared data set scales with input size, (3) along which dimensions the shared data set scales, and (4) how sensitive the shared data set is with respect to the input’s characteristics, i.e., node degree and connectivity in graph workloads. We observe significant variety in scaling behavior across workloads: some workloads feature a shared data set that scales linearly with input size, while others feature sublinear scaling (following a \(\sqrt {2} \) or \(\sqrt [3]{2} \) relationship). We further demonstrate how the shared data set affects the optimum last-level cache organization (memory-side versus SM-side) in multi-chip GPUs, as well as optimum memory page allocation and thread scheduling policy. Sensitivity analyses demonstrate the insights across the broad design space.
期刊介绍:
ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.