{"title":"Leveraging memory effects and gradient information in consensus-based optimisation: On global convergence in mean-field law","authors":"Konstantin Riedl","doi":"10.1017/s0956792523000293","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study consensus-based optimisation (CBO), a versatile, flexible and customisable optimisation method suitable for performing nonconvex and nonsmooth global optimisations in high dimensions. CBO is a multi-particle metaheuristic, which is effective in various applications and at the same time amenable to theoretical analysis thanks to its minimalistic design. The underlying dynamics, however, is flexible enough to incorporate different mechanisms widely used in evolutionary computation and machine learning, as we show by analysing a variant of CBO which makes use of memory effects and gradient information. We rigorously prove that this dynamics converges to a global minimiser of the objective function in mean-field law for a vast class of functions under minimal assumptions on the initialisation of the method. The proof in particular reveals how to leverage further, in some applications advantageous, forces in the dynamics without loosing provable global convergence. To demonstrate the benefit of the herein investigated memory effects and gradient information in certain applications, we present numerical evidence for the superiority of this CBO variant in applications such as machine learning and compressed sensing, which en passant widen the scope of applications of CBO.","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"18 1","pages":"0"},"PeriodicalIF":2.3000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0956792523000293","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this paper, we study consensus-based optimisation (CBO), a versatile, flexible and customisable optimisation method suitable for performing nonconvex and nonsmooth global optimisations in high dimensions. CBO is a multi-particle metaheuristic, which is effective in various applications and at the same time amenable to theoretical analysis thanks to its minimalistic design. The underlying dynamics, however, is flexible enough to incorporate different mechanisms widely used in evolutionary computation and machine learning, as we show by analysing a variant of CBO which makes use of memory effects and gradient information. We rigorously prove that this dynamics converges to a global minimiser of the objective function in mean-field law for a vast class of functions under minimal assumptions on the initialisation of the method. The proof in particular reveals how to leverage further, in some applications advantageous, forces in the dynamics without loosing provable global convergence. To demonstrate the benefit of the herein investigated memory effects and gradient information in certain applications, we present numerical evidence for the superiority of this CBO variant in applications such as machine learning and compressed sensing, which en passant widen the scope of applications of CBO.
期刊介绍:
Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.