{"title":"Optimization of Job Shop Scheduling Problem by Genetic Algorithms: Case Study","authors":"","doi":"10.24425/mper.2023.147189","DOIUrl":null,"url":null,"abstract":"The Job Shop scheduling problem is widely used in industry and has been the subject of study by several researchers with the aim of optimizing work sequences. This case study provides an overview of genetic algorithms, which have great potential for solving this type of combinatorial problem. The method will be applied manually during this study to understand the procedure and process of executing programs based on genetic algorithms. This problem requires strong decision analysis throughout the process due to the numerous choices and allocations of jobs to machines at specific times, in a specific order, and over a given duration. This operation is carried out at the operational level, and research must find an intelligent method to identify the best and most optimal combination. This article presents genetic algorithms in detail to explain their usage and to understand the compilation method of an intelligent program based on genetic algorithms. By the end of the article, the genetic algorithm method will have proven its performance in the search for the optimal solution to achieve the most optimal job sequence scenario.","PeriodicalId":45454,"journal":{"name":"Management and Production Engineering Review","volume":"855 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Management and Production Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24425/mper.2023.147189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
Abstract
The Job Shop scheduling problem is widely used in industry and has been the subject of study by several researchers with the aim of optimizing work sequences. This case study provides an overview of genetic algorithms, which have great potential for solving this type of combinatorial problem. The method will be applied manually during this study to understand the procedure and process of executing programs based on genetic algorithms. This problem requires strong decision analysis throughout the process due to the numerous choices and allocations of jobs to machines at specific times, in a specific order, and over a given duration. This operation is carried out at the operational level, and research must find an intelligent method to identify the best and most optimal combination. This article presents genetic algorithms in detail to explain their usage and to understand the compilation method of an intelligent program based on genetic algorithms. By the end of the article, the genetic algorithm method will have proven its performance in the search for the optimal solution to achieve the most optimal job sequence scenario.
期刊介绍:
Management and Production Engineering Review (MPER) is a peer-refereed, international, multidisciplinary journal covering a broad spectrum of topics in production engineering and management. Production engineering is a currently developing stream of science encompassing planning, design, implementation and management of production and logistic systems. Orientation towards human resources factor differentiates production engineering from other technical disciplines. The journal aims to advance the theoretical and applied knowledge of this rapidly evolving field, with a special focus on production management, organisation of production processes, management of production knowledge, computer integrated management of production flow, enterprise effectiveness, maintainability and sustainable manufacturing, productivity and organisation, forecasting, modelling and simulation, decision making systems, project management, innovation management and technology transfer, quality engineering and safety at work, supply chain optimization and logistics. Management and Production Engineering Review is published under the auspices of the Polish Academy of Sciences Committee on Production Engineering and Polish Association for Production Management.