Orbital Stability of Ground States for a Mass Subcritical Fractional Schrodinger-Poisson Equation

Ying Yan, Yan-Ying Shang
{"title":"Orbital Stability of Ground States for a Mass Subcritical Fractional Schrodinger-Poisson Equation","authors":"Ying Yan, Yan-Ying Shang","doi":"10.56557/ajomcor/2023/v30i48420","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of ground state standing waves with prescribed mass constraints for the fractional Schrodinger-Poisson equation \\(\\mathit{i}\\partial_t\\psi\\) - (- \\(\\Delta\\))\\(\\\\^S\\)\\(\\psi\\) - (|\\(\\mathit{x}\\)|\\(\\\\^2\\\\^t\\\\^-\\\\^3\\) * |\\(\\psi\\)|\\(\\\\^2\\))\\(\\psi\\) + |\\(\\psi\\)|\\(\\\\^p\\\\^-\\\\^2\\)\\(\\psi\\) = 0, where \\(\\psi\\) : \\(\\mathbb{R}\\\\^3\\) x \\(\\mathbb{R}\\) \\(\\to\\) \\(\\mathbb{C}\\), s, t \\(\\in\\) (0,1), 2s + 2t > 3 and \\(\\mathit{p}\\) \\(\\in\\) \\((2 , {4s \\pm 2t \\over s+t})\\). In particular, in the mass subcritical case but \\(p \\neq \\frac{4 s+2 t}{s+t}\\), that is, \\(p \\in\\left(2,2+\\frac{4 s}{3}\\right) \\backslash\\left\\{\\frac{4 s+2 t}{s+t}\\right\\}\\),we prove that the solution with initial datum 0 exists globally and the set of ground states is orbitally stable.","PeriodicalId":200824,"journal":{"name":"Asian Journal of Mathematics and Computer Research","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Mathematics and Computer Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56557/ajomcor/2023/v30i48420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the existence of ground state standing waves with prescribed mass constraints for the fractional Schrodinger-Poisson equation \(\mathit{i}\partial_t\psi\) - (- \(\Delta\))\(\\^S\)\(\psi\) - (|\(\mathit{x}\)|\(\\^2\\^t\\^-\\^3\) * |\(\psi\)|\(\\^2\))\(\psi\) + |\(\psi\)|\(\\^p\\^-\\^2\)\(\psi\) = 0, where \(\psi\) : \(\mathbb{R}\\^3\) x \(\mathbb{R}\) \(\to\) \(\mathbb{C}\), s, t \(\in\) (0,1), 2s + 2t > 3 and \(\mathit{p}\) \(\in\) \((2 , {4s \pm 2t \over s+t})\). In particular, in the mass subcritical case but \(p \neq \frac{4 s+2 t}{s+t}\), that is, \(p \in\left(2,2+\frac{4 s}{3}\right) \backslash\left\{\frac{4 s+2 t}{s+t}\right\}\),we prove that the solution with initial datum 0 exists globally and the set of ground states is orbitally stable.
质量亚临界分数阶薛定谔-泊松方程基态的轨道稳定性
本文研究了分数阶薛定谔-泊松方程\(\mathit{i}\partial_t\psi\) - (- \(\Delta\)) \(\Ŝ\)\(\psi\) - (| \(\mathit{x}\) | \(\\^2\t̂\\^-\\^3\) * | \(\psi\) | \(\\^2\)) \(\psi\) + | \(\psi\) | \(\p̂\\^-\\^2\)\(\psi\) = 0,其中\(\psi\):\(\mathbb{R}\\^3\) x \(\mathbb{R}\)\(\to\)\(\mathbb{C}\), s, t \(\in\) (0,1), 2s + 2t >3、\(\mathit{p}\)\(\in\)\((2 , {4s \pm 2t \over s+t})\)。特别地,在质量亚临界情况下,但\(p \neq \frac{4 s+2 t}{s+t}\),即\(p \in\left(2,2+\frac{4 s}{3}\right) \backslash\left\{\frac{4 s+2 t}{s+t}\right\}\),我们证明了初始基准为0的解是全局存在的,并且基态集是轨道稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信