An Order-Theoretic Perspective on Modes and Maximum A Posteriori Estimation in Bayesian Inverse Problems

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Hefin Lambley, T. J. Sullivan
{"title":"An Order-Theoretic Perspective on Modes and Maximum A Posteriori Estimation in Bayesian Inverse Problems","authors":"Hefin Lambley, T. J. Sullivan","doi":"10.1137/22m154243x","DOIUrl":null,"url":null,"abstract":"It is often desirable to summarize a probability measure on a space in terms of a mode, or MAP estimator, i.e., a point of maximum probability. Such points can be rigorously defined using masses of metric balls in the small-radius limit. However, the theory is not entirely straightforward: the literature contains multiple notions of mode and various examples of pathological measures that have no mode in any sense. Since the masses of balls induce natural orderings on the points of , this article aims to shed light on some of the problems in nonparametric MAP estimation by taking an order-theoretic perspective, which appears to be a new one in the inverse problems community. This point of view opens up attractive proof strategies based upon the Cantor and Kuratowski intersection theorems; it also reveals that many of the pathologies arise from the distinction between greatest and maximal elements of an order, and from the existence of incomparable elements of , which we show can be dense in , even for an absolutely continuous measure on .","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m154243x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 5

Abstract

It is often desirable to summarize a probability measure on a space in terms of a mode, or MAP estimator, i.e., a point of maximum probability. Such points can be rigorously defined using masses of metric balls in the small-radius limit. However, the theory is not entirely straightforward: the literature contains multiple notions of mode and various examples of pathological measures that have no mode in any sense. Since the masses of balls induce natural orderings on the points of , this article aims to shed light on some of the problems in nonparametric MAP estimation by taking an order-theoretic perspective, which appears to be a new one in the inverse problems community. This point of view opens up attractive proof strategies based upon the Cantor and Kuratowski intersection theorems; it also reveals that many of the pathologies arise from the distinction between greatest and maximal elements of an order, and from the existence of incomparable elements of , which we show can be dense in , even for an absolutely continuous measure on .
贝叶斯反问题的模态和最大后验估计的序理论观点
通常需要用模态或MAP估计量(即最大概率点)来总结空间上的概率度量。这样的点可以在小半径极限下用公制球的质量严格地定义。然而,该理论并非完全直截了当:文献中包含了多种模式概念和各种病理测量的例子,这些例子在任何意义上都没有模式。由于球的质量在点上引起自然有序,本文旨在从序理论的角度来解释非参数MAP估计中的一些问题,这似乎是逆问题界的一个新观点。这一观点在康托尔和库拉托夫斯基交定理的基础上开辟了有吸引力的证明策略;它还揭示了许多病态是由于一个数列的最大元素和最大元素之间的区别,以及由于不可比较元素的存在而产生的,我们证明,即使对于绝对连续的测度,不可比较元素也可以是密集的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信