{"title":"Dirac cohomology for the BGG category O","authors":"Spyridon Afentoulidis-Almpanis","doi":"10.1016/j.indag.2023.11.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>We study Dirac cohomology </span><span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> for modules belonging to category <span><math><mi>O</mi></math></span><span> of a finite dimensional complex semisimple Lie algebra. We start by studying the generalized infinitesimal character decomposition of </span><span><math><mrow><mi>M</mi><mo>⊗</mo><mi>S</mi></mrow></math></span>, with <span><math><mi>S</mi></math></span> being a spin module of <span><math><msup><mrow><mi>h</mi></mrow><mrow><mo>⊥</mo></mrow></msup></math></span>. As a consequence, “Vogan’s conjecture” holds, and we prove a nonvanishing result for <span><math><mrow><msubsup><mrow><mi>H</mi></mrow><mrow><mi>D</mi></mrow><mrow><mi>g</mi><mo>,</mo><mi>h</mi></mrow></msubsup><mrow><mo>(</mo><mi>M</mi><mo>)</mo></mrow></mrow></math></span> while we show that in the case of a Hermitian symmetric pair <span><math><mrow><mo>(</mo><mi>g</mi><mo>,</mo><mi>k</mi><mo>)</mo></mrow></math></span> and an irreducible unitary module <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>, Dirac cohomology coincides with the nilpotent Lie algebra cohomology with coefficients in <span><math><mi>M</mi></math></span>. In the last part, we show that the higher Dirac cohomology and index introduced by Pandžić and Somberg satisfy nice homological properties for <span><math><mrow><mi>M</mi><mo>∈</mo><mi>O</mi></mrow></math></span>.</p></div>","PeriodicalId":56126,"journal":{"name":"Indagationes Mathematicae-New Series","volume":"35 2","pages":"Pages 205-229"},"PeriodicalIF":0.5000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae-New Series","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019357723001003","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study Dirac cohomology for modules belonging to category of a finite dimensional complex semisimple Lie algebra. We start by studying the generalized infinitesimal character decomposition of , with being a spin module of . As a consequence, “Vogan’s conjecture” holds, and we prove a nonvanishing result for while we show that in the case of a Hermitian symmetric pair and an irreducible unitary module , Dirac cohomology coincides with the nilpotent Lie algebra cohomology with coefficients in . In the last part, we show that the higher Dirac cohomology and index introduced by Pandžić and Somberg satisfy nice homological properties for .
期刊介绍:
Indagationes Mathematicae is a peer-reviewed international journal for the Mathematical Sciences of the Royal Dutch Mathematical Society. The journal aims at the publication of original mathematical research papers of high quality and of interest to a large segment of the mathematics community. The journal also welcomes the submission of review papers of high quality.