{"title":"Bounded PCA based Multi Sensor Image Fusion Employing Curvelet Transform Coefficients","authors":"Aniket Kumar Singh, Debasis Chaudhuri, Shantanu Mitra, Manish Pratap Singh, Bidyarthi Baran Chaudhuri","doi":"10.14429/dsj.73.18949","DOIUrl":null,"url":null,"abstract":"The fusion of thermal and visible images acts as an important device for target detection. The quality of the spectral content of the fused image improves with wavelet-based image fusion. However, compared to PCA-based fusion, most wavelet-based methods provide results with a lower spatial resolution. The outcome gets better when the two approaches are combined, but they may still be refined. Compared to wavelets, the curvelet transforms more accurately depict the edges in the image. Enhancing the edges is a smart way to improve spatial resolution and the edges are crucial for interpreting the images. The fusion technique that utilizes curvelets enables the provision of additional data in both spectral and spatial areas concurrently. In this paper, we employ an amalgamation of Curvelet Transform and a Bounded PCA (CTBPCA) method to fuse thermal and visible images. To evidence the enhanced efficiency of our proposed technique, multiple evaluation metrics and comparisons with existing image merging methods are employed. Our approach outperforms others in both qualitative and quantitative analysis, except for runtime performance. Future Enhancement-The study will be based on using the fused image for target recognition. Future work should also focus on this method’s continued improvement and optimization for real-time video processing.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dsj.73.18949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The fusion of thermal and visible images acts as an important device for target detection. The quality of the spectral content of the fused image improves with wavelet-based image fusion. However, compared to PCA-based fusion, most wavelet-based methods provide results with a lower spatial resolution. The outcome gets better when the two approaches are combined, but they may still be refined. Compared to wavelets, the curvelet transforms more accurately depict the edges in the image. Enhancing the edges is a smart way to improve spatial resolution and the edges are crucial for interpreting the images. The fusion technique that utilizes curvelets enables the provision of additional data in both spectral and spatial areas concurrently. In this paper, we employ an amalgamation of Curvelet Transform and a Bounded PCA (CTBPCA) method to fuse thermal and visible images. To evidence the enhanced efficiency of our proposed technique, multiple evaluation metrics and comparisons with existing image merging methods are employed. Our approach outperforms others in both qualitative and quantitative analysis, except for runtime performance. Future Enhancement-The study will be based on using the fused image for target recognition. Future work should also focus on this method’s continued improvement and optimization for real-time video processing.