{"title":"r-process Abundance Patterns in the Globular Cluster M92","authors":"Evan N. Kirby, Alexander P. Ji, Mikhail Kovalev","doi":"10.3847/1538-4357/acf309","DOIUrl":null,"url":null,"abstract":"Abstract Whereas light-element abundance variations are a hallmark of globular clusters, there is little evidence for variations in neutron-capture elements. A significant exception is M15, which shows a star-to-star dispersion in neutron-capture abundances of at least one order of magnitude. The literature contains evidence both for and against a neutron-capture dispersion in M92. We conducted an analysis of archival Keck/HIRES spectra of 35 stars in M92, 29 of which are giants, which we use exclusively for our conclusions. M92 conforms to the abundance variations typical of massive clusters. Like other globular clusters, its neutron-capture abundances were generated by the r -process. We confirm a star-to-star dispersion in r -process abundances. Unlike M15, the dispersion is limited to “first-generation” (low-Na, high-Mg) stars, and the dispersion is smaller for Sr, Y, and Zr than for Ba and the lanthanides. This is the first detection of a relation between light-element and neutron-capture abundances in a globular cluster. We propose that a source of the main r -process polluted the cluster shortly before or concurrently with the first generation of star formation. The heavier r -process abundances were inhomogeneously distributed while the first-generation stars were forming. The second-generation stars formed after several crossing times (∼0.8 Myr); hence, the second generation shows no r -process dispersion. This scenario imposes a minimum temporal separation of 0.8 Myr between the first and second generations.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acf309","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Whereas light-element abundance variations are a hallmark of globular clusters, there is little evidence for variations in neutron-capture elements. A significant exception is M15, which shows a star-to-star dispersion in neutron-capture abundances of at least one order of magnitude. The literature contains evidence both for and against a neutron-capture dispersion in M92. We conducted an analysis of archival Keck/HIRES spectra of 35 stars in M92, 29 of which are giants, which we use exclusively for our conclusions. M92 conforms to the abundance variations typical of massive clusters. Like other globular clusters, its neutron-capture abundances were generated by the r -process. We confirm a star-to-star dispersion in r -process abundances. Unlike M15, the dispersion is limited to “first-generation” (low-Na, high-Mg) stars, and the dispersion is smaller for Sr, Y, and Zr than for Ba and the lanthanides. This is the first detection of a relation between light-element and neutron-capture abundances in a globular cluster. We propose that a source of the main r -process polluted the cluster shortly before or concurrently with the first generation of star formation. The heavier r -process abundances were inhomogeneously distributed while the first-generation stars were forming. The second-generation stars formed after several crossing times (∼0.8 Myr); hence, the second generation shows no r -process dispersion. This scenario imposes a minimum temporal separation of 0.8 Myr between the first and second generations.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.