Himanshu Upreti, Satyaranjan R. Mishra, Alok Kumar Pandey, Pradyumna K. Pattnaik
{"title":"Thermodynamics analysis of Casson hybrid nanofluid flow over a porous Riga plate with slip effect","authors":"Himanshu Upreti, Satyaranjan R. Mishra, Alok Kumar Pandey, Pradyumna K. Pattnaik","doi":"10.1615/intjmultcompeng.2023043190","DOIUrl":null,"url":null,"abstract":"The main objective of this work is to examine the nature of heat transfer and thermodynamics on Darcy-Forchheimer flow over porous Riga plate using Casson hybrid nanofluid. The impact of external forces i.e., slip velocity and magnetic field are discussed for pure fluid, nanofluid and hybrid nanofluid. The Hamilton-Crosser model of thermal conductivity is applied for the nanofluid as well as hybrid nanofluid. The existing nonlinear partial differential equations are solved by Runge-Kutta-Fehlberg (RKF) technique. The present code is validated numerically with previous works and found in good agreement with them. The results affirm that all fluids velocities declined with increase in Casson factor values. Moreover, increasing magnetization, the entropy profiles are depreciated significantly for the case of pure fluid, nanofluid and hybrid nanofluid. This comparative study reveals that hybrid nanofluid dominates on both nanofluid and pure fluid.","PeriodicalId":50350,"journal":{"name":"International Journal for Multiscale Computational Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Multiscale Computational Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/intjmultcompeng.2023043190","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The main objective of this work is to examine the nature of heat transfer and thermodynamics on Darcy-Forchheimer flow over porous Riga plate using Casson hybrid nanofluid. The impact of external forces i.e., slip velocity and magnetic field are discussed for pure fluid, nanofluid and hybrid nanofluid. The Hamilton-Crosser model of thermal conductivity is applied for the nanofluid as well as hybrid nanofluid. The existing nonlinear partial differential equations are solved by Runge-Kutta-Fehlberg (RKF) technique. The present code is validated numerically with previous works and found in good agreement with them. The results affirm that all fluids velocities declined with increase in Casson factor values. Moreover, increasing magnetization, the entropy profiles are depreciated significantly for the case of pure fluid, nanofluid and hybrid nanofluid. This comparative study reveals that hybrid nanofluid dominates on both nanofluid and pure fluid.
期刊介绍:
The aim of the journal is to advance the research and practice in diverse areas of Multiscale Computational Science and Engineering. The journal will publish original papers and educational articles of general value to the field that will bridge the gap between modeling, simulation and design of products based on multiscale principles. The scope of the journal includes papers concerned with bridging of physical scales, ranging from the atomic level to full scale products and problems involving multiple physical processes interacting at multiple spatial and temporal scales. The emerging areas of computational nanotechnology and computational biotechnology and computational energy sciences are of particular interest to the journal. The journal is intended to be of interest and use to researchers and practitioners in academic, governmental and industrial communities.