Development of a SCARA robot arm for palletizing applications based on computer vision

IF 1.2 Q3 ENGINEERING, MECHANICAL
Vinh Ho, Duy Vo, Phan Trung
{"title":"Development of a SCARA robot arm for palletizing applications based on computer vision","authors":"Vinh Ho, Duy Vo, Phan Trung","doi":"10.5937/fme2304541n","DOIUrl":null,"url":null,"abstract":"This paper develops a computer vision system integrated with a SCARA robot arm to pick and place objects. A novel method to calculate the 3D coordinates of the objects from a camera is proposed. This method helps simplify the camera calibration process. It requires no knowledge of camera modeling and mathematical knowledge of coordinate transformations. The least square method will predate the Equation describing the relationship between pixel coordinates and 3D coordinates. An image processing algorithm is presented to detect objects by color or pixel intensity (thresholding method). The pixel coordinates of the objects are then converted to 3D coordinates. The inverse kinematic Equation is applied to find the joint angles of the SCARA robot. A palletizing application is implemented to test the accuracy of the proposed method. The kinematic Equation of the robot arm is presented to convert the 3D position of the objects to the robot joint angles. So, the robot moves exactly to the required positions by providing suitable rotational movements for each robot joint. The experiment results show that the robot can pick and place 27 boxes on the conveyor to the pallet with an average time of 2.8s per box. The positions of the boxes were determined with an average error of 0.5112mm and 0.6838mm in the X and Y directions, respectively.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":"32 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2304541n","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a computer vision system integrated with a SCARA robot arm to pick and place objects. A novel method to calculate the 3D coordinates of the objects from a camera is proposed. This method helps simplify the camera calibration process. It requires no knowledge of camera modeling and mathematical knowledge of coordinate transformations. The least square method will predate the Equation describing the relationship between pixel coordinates and 3D coordinates. An image processing algorithm is presented to detect objects by color or pixel intensity (thresholding method). The pixel coordinates of the objects are then converted to 3D coordinates. The inverse kinematic Equation is applied to find the joint angles of the SCARA robot. A palletizing application is implemented to test the accuracy of the proposed method. The kinematic Equation of the robot arm is presented to convert the 3D position of the objects to the robot joint angles. So, the robot moves exactly to the required positions by providing suitable rotational movements for each robot joint. The experiment results show that the robot can pick and place 27 boxes on the conveyor to the pallet with an average time of 2.8s per box. The positions of the boxes were determined with an average error of 0.5112mm and 0.6838mm in the X and Y directions, respectively.
基于计算机视觉的SCARA码垛机械臂的研制
本文开发了一种集成SCARA机械臂的计算机视觉系统,用于物体的拾取和放置。提出了一种利用相机计算物体三维坐标的新方法。该方法简化了摄像机标定过程。它不需要相机建模知识和坐标变换的数学知识。最小二乘法将先于描述像素坐标与三维坐标之间关系的方程。提出了一种根据颜色或像素强度(阈值法)检测目标的图像处理算法。然后将对象的像素坐标转换为3D坐标。利用运动学逆方程求解SCARA机器人的关节角。实现了一个码垛应用程序来测试所提出方法的准确性。建立了机器人手臂的运动方程,将物体的三维位置转换为机器人关节的角度。因此,通过为每个机器人关节提供合适的旋转运动,机器人精确地移动到所需的位置。实验结果表明,该机器人可将27个箱子在输送机上拾取放置到托盘上,平均每箱时间为2.8s。确定箱体位置,X、Y方向平均误差分别为0.512 mm和0.6838mm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FME Transactions
FME Transactions ENGINEERING, MECHANICAL-
CiteScore
3.60
自引率
31.20%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信