A deep neural network model for paternity testing based on 15-loci STR for Iraqi families

IF 2.1 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Donya A. Khalid, Nasser Nafea
{"title":"A deep neural network model for paternity testing based on 15-loci STR for Iraqi families","authors":"Donya A. Khalid, Nasser Nafea","doi":"10.1515/jisys-2023-0041","DOIUrl":null,"url":null,"abstract":"Abstract Paternity testing using a deoxyribose nucleic acid (DNA) profile is an essential branch of forensic science, and DNA short tandem repeat (STR) is usually used for this purpose. Nowadays, in third-world countries, conventional kinship analysis techniques used in forensic investigations result in inadequate accuracy measurements, especially when dealing with large human STR datasets; they compare human profiles manually so that the number of samples is limited due to the required human efforts and time consumption. By utilizing automation made possible by AI, forensic investigations are conducted more efficiently, saving both time conception and cost. In this article, we propose a new algorithm for predicting paternity based on the 15-loci STR-DNA datasets using a deep neural network (DNN), where comparisons among many human profiles are held regardless of the limitation of the number of samples. For the purpose of paternity testing, familial data are artificially created based on the real data of individual Iraqi people from Al-Najaf province. Such action helps to overcome the shortage of Iraqi data due to restricted policies and the secrecy of familial datasets. About 53,530 datasets are used in the proposed DNN model for the purpose of training and testing. The Keras library based on Python is used to implement and test the proposed system, as well as the confusion matrix and receiver operating characteristic curve for system evaluation. The system shows excellent accuracy of 99.6% in paternity tests, which is the highest accuracy compared to the existing works. This system shows a good attempt at testing paternity based on a technique of artificial intelligence.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"32 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Paternity testing using a deoxyribose nucleic acid (DNA) profile is an essential branch of forensic science, and DNA short tandem repeat (STR) is usually used for this purpose. Nowadays, in third-world countries, conventional kinship analysis techniques used in forensic investigations result in inadequate accuracy measurements, especially when dealing with large human STR datasets; they compare human profiles manually so that the number of samples is limited due to the required human efforts and time consumption. By utilizing automation made possible by AI, forensic investigations are conducted more efficiently, saving both time conception and cost. In this article, we propose a new algorithm for predicting paternity based on the 15-loci STR-DNA datasets using a deep neural network (DNN), where comparisons among many human profiles are held regardless of the limitation of the number of samples. For the purpose of paternity testing, familial data are artificially created based on the real data of individual Iraqi people from Al-Najaf province. Such action helps to overcome the shortage of Iraqi data due to restricted policies and the secrecy of familial datasets. About 53,530 datasets are used in the proposed DNN model for the purpose of training and testing. The Keras library based on Python is used to implement and test the proposed system, as well as the confusion matrix and receiver operating characteristic curve for system evaluation. The system shows excellent accuracy of 99.6% in paternity tests, which is the highest accuracy compared to the existing works. This system shows a good attempt at testing paternity based on a technique of artificial intelligence.
基于伊拉克家庭15位点STR的亲子鉴定深度神经网络模型
利用脱氧核糖核酸(DNA)图谱进行亲子鉴定是法医学的一个重要分支,DNA短串联重复序列(STR)通常用于此目的。如今,在第三世界国家,法医调查中使用的传统亲属分析技术导致准确性测量不足,特别是在处理大型人类STR数据集时;他们手动比较人的配置文件,因此由于所需的人力和时间消耗,样本的数量受到限制。通过利用人工智能实现的自动化,法医调查更有效地进行,节省了时间和成本。在本文中,我们提出了一种基于15个位点STR-DNA数据集的预测亲子关系的新算法,该算法使用深度神经网络(DNN),在该算法中,无论样本数量的限制,都可以对许多人类档案进行比较。为了进行亲子鉴定,家庭数据是根据纳杰夫省伊拉克人的真实数据人为创建的。这种行动有助于克服伊拉克由于政策限制和家庭数据集保密而缺乏数据的问题。在提出的DNN模型中,大约使用了53,530个数据集用于训练和测试。使用基于Python的Keras库实现和测试了所提出的系统,并使用混淆矩阵和接收机工作特性曲线进行系统评估。该系统在亲子鉴定中准确率高达99.6%,是现有系统中准确率最高的。该系统在基于人工智能技术的亲子鉴定方面做了很好的尝试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Intelligent Systems
Journal of Intelligent Systems COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-
CiteScore
5.90
自引率
3.30%
发文量
77
审稿时长
51 weeks
期刊介绍: The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信