Numerical investigation on effect of spark plug configuration on performance in an engine cylinder

IF 1.2 Q3 ENGINEERING, MECHANICAL
Mehul Bakhshi, Ranjan Pritanshu, Anuj Shukla
{"title":"Numerical investigation on effect of spark plug configuration on performance in an engine cylinder","authors":"Mehul Bakhshi, Ranjan Pritanshu, Anuj Shukla","doi":"10.5937/fme2304585m","DOIUrl":null,"url":null,"abstract":"A numerical investigation of combustion inside single and twin-spark engines was performed to study the effect of a spark plug, positions and spark timings on engine performance. Improvement in engine performance is one of the automotive industry's primary research areas. Consequently, the study's results can be utilised to optimise engine configurations to achieve maximum performance. The investigation was conducted using a finite volume-based open-source software, OpenFOAM, for computational simulations. Simulations were conducted using the XiEngineFOAM solver with a transport equation for modelling flame fronts. The Standard k-e turbulence model was used to predict turbulence parameters. The simulation was conducted for compression and power stroke (crank angle between - 180° and 180°), assuming an even distribution of the air-fuel mixture within the pentroof 4-valve engine cylinder. Simulations were conducted for four cases, including variations in the position and timing of spark plugs in single-spark and twin-spark engines. According to the results of the simulations, the single-spark engine provides the best performance when the spark plug is ignited early and positioned at the cylinder's centre. When placed at an optimal position determined by flame travel and collision, the twin-spark engine gives the best performance at the highest difference between the spark timings of the two spark plugs.","PeriodicalId":12218,"journal":{"name":"FME Transactions","volume":"4 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FME Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5937/fme2304585m","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A numerical investigation of combustion inside single and twin-spark engines was performed to study the effect of a spark plug, positions and spark timings on engine performance. Improvement in engine performance is one of the automotive industry's primary research areas. Consequently, the study's results can be utilised to optimise engine configurations to achieve maximum performance. The investigation was conducted using a finite volume-based open-source software, OpenFOAM, for computational simulations. Simulations were conducted using the XiEngineFOAM solver with a transport equation for modelling flame fronts. The Standard k-e turbulence model was used to predict turbulence parameters. The simulation was conducted for compression and power stroke (crank angle between - 180° and 180°), assuming an even distribution of the air-fuel mixture within the pentroof 4-valve engine cylinder. Simulations were conducted for four cases, including variations in the position and timing of spark plugs in single-spark and twin-spark engines. According to the results of the simulations, the single-spark engine provides the best performance when the spark plug is ignited early and positioned at the cylinder's centre. When placed at an optimal position determined by flame travel and collision, the twin-spark engine gives the best performance at the highest difference between the spark timings of the two spark plugs.
火花塞结构对发动机缸内性能影响的数值研究
采用数值模拟方法研究了火花塞、火花塞位置和火花塞正时对发动机性能的影响。提高发动机的性能是汽车工业的主要研究领域之一。因此,研究结果可用于优化发动机配置,以实现最大性能。这项调查是使用基于有限体积的开源软件OpenFOAM进行计算模拟的。利用xiengineefoam求解器和传递方程对火焰锋面进行了模拟。采用标准k-e湍流模型预测湍流参数。在假定五顶四气门发动机气缸内空气-燃料混合均匀分布的情况下,对压缩和动力冲程(曲柄角在- 180°和180°之间)进行了仿真。对四种情况进行了仿真,包括单火花和双火花发动机火花塞位置和正时的变化。仿真结果表明,当火花塞点火较早且位于气缸中心位置时,单火花发动机的性能最佳。当放置在由火焰行程和碰撞决定的最佳位置时,双火花发动机在两个火花塞的火花正时之间的最大差异处提供最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
FME Transactions
FME Transactions ENGINEERING, MECHANICAL-
CiteScore
3.60
自引率
31.20%
发文量
24
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信