Micro/nano manufacturing aircraft surface with anti-icing and deicing performances: An overview

IF 6.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Chen Long, Xu Jinghang, Luo Xichun, Liu Zhanqiang, Wang Bing, Song Qinghua, Cai Yukui, Wan Yi, Gao Xiangyu, Li Chunlong
{"title":"Micro/nano manufacturing aircraft surface with anti-icing and deicing performances: An overview","authors":"Chen Long, Xu Jinghang, Luo Xichun, Liu Zhanqiang, Wang Bing, Song Qinghua, Cai Yukui, Wan Yi, Gao Xiangyu, Li Chunlong","doi":"10.1515/ntrev-2023-0105","DOIUrl":null,"url":null,"abstract":"Abstract The aircraft surface is prone to icing when flying under windward conditions. It is required to protect the aircraft surface from icing for flight safety. The anti-/deicing performance of aircraft surface is affected by the surface morphology and surface wettability. The hydrophobicity of aircraft surface with anti-/deicing performance is closely related to the surface energy. To satisfy the requirements of anti-/deicing surface processing, the micro/nano manufacturing technologies have been developed to fabricate anti-/deicing functional aircraft surfaces. The icing time and deicing efficiency for aircraft surfaces fabricated with micro/nano manufacturing technologies are dozens of times more than those manufactured by conventional anti-/deicing methods. In this study, the recent technologies of micro/nano manufacturing of anti-/deicing functional surfaces are reviewed. First, the extreme conditions during aircraft flight and the huge potential safety hazards of icing are introduced. Then, the principle of aircraft icing and mechanism of both anti-icing and deicing are summarized. Then, the current micro/nano manufacturing technologies for preparing anti-icing and deicing surfaces, including electrochemical, chemical, laser and wire-cut etching chemical, electrochemical, vapor and plasma deposition, and other processing methods are described. By summarizing the advantages and disadvantages of different preparation methods, guidance is provided for new methods of preparing anti-icing and deicing surfaces, in order to avoid disadvantages and promote advantages. Fabrication and characterization of nanocomposite materials and composite coatings/thin films with anti-icing and deicing properties are discussed. Finally, the development trend and application prospect of micro/nano manufacturing in the field of anti-icing and deicing are presented.","PeriodicalId":18839,"journal":{"name":"Nanotechnology Reviews","volume":"13 1","pages":"0"},"PeriodicalIF":6.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ntrev-2023-0105","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The aircraft surface is prone to icing when flying under windward conditions. It is required to protect the aircraft surface from icing for flight safety. The anti-/deicing performance of aircraft surface is affected by the surface morphology and surface wettability. The hydrophobicity of aircraft surface with anti-/deicing performance is closely related to the surface energy. To satisfy the requirements of anti-/deicing surface processing, the micro/nano manufacturing technologies have been developed to fabricate anti-/deicing functional aircraft surfaces. The icing time and deicing efficiency for aircraft surfaces fabricated with micro/nano manufacturing technologies are dozens of times more than those manufactured by conventional anti-/deicing methods. In this study, the recent technologies of micro/nano manufacturing of anti-/deicing functional surfaces are reviewed. First, the extreme conditions during aircraft flight and the huge potential safety hazards of icing are introduced. Then, the principle of aircraft icing and mechanism of both anti-icing and deicing are summarized. Then, the current micro/nano manufacturing technologies for preparing anti-icing and deicing surfaces, including electrochemical, chemical, laser and wire-cut etching chemical, electrochemical, vapor and plasma deposition, and other processing methods are described. By summarizing the advantages and disadvantages of different preparation methods, guidance is provided for new methods of preparing anti-icing and deicing surfaces, in order to avoid disadvantages and promote advantages. Fabrication and characterization of nanocomposite materials and composite coatings/thin films with anti-icing and deicing properties are discussed. Finally, the development trend and application prospect of micro/nano manufacturing in the field of anti-icing and deicing are presented.
微/纳米制造飞机表面防冰除冰性能综述
飞机在迎风条件下飞行时,表面容易结冰。为了飞行安全,它需要保护飞机表面不结冰。飞机表面的抗除冰性能受表面形貌和表面润湿性的影响。具有防除冰性能的飞机表面的疏水性与表面能密切相关。为满足防/除冰表面加工的要求,发展了微纳米制造技术来制备防/除冰功能飞机表面。采用微纳制造技术制造的飞机表面的结冰时间和除冰效率是传统防除冰方法制造的飞机表面的数十倍。本文综述了抗/除冰功能表面的微纳制造技术的最新进展。首先,介绍了飞机飞行过程中的极端条件和结冰的巨大安全隐患。然后,总结了飞机结冰的原理和防冰除冰的机理。然后,介绍了目前制备防冰除冰表面的微纳制造技术,包括电化学、化学、激光和线切蚀刻化学、电化学、蒸气和等离子沉积等加工方法。通过总结不同制备方法的优缺点,为防冰除冰表面的新制备方法提供指导,达到扬长避短的目的。讨论了具有防冰除冰性能的纳米复合材料和复合涂层/薄膜的制备与表征。最后,展望了微纳米制造在防冰除冰领域的发展趋势和应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanotechnology Reviews
Nanotechnology Reviews CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
11.40
自引率
13.50%
发文量
137
审稿时长
7 weeks
期刊介绍: The bimonthly journal Nanotechnology Reviews provides a platform for scientists and engineers of all involved disciplines to exchange important recent research on fundamental as well as applied aspects. While expert reviews provide a state of the art assessment on a specific topic, research highlight contributions present most recent and novel findings. In addition to technical contributions, Nanotechnology Reviews publishes articles on implications of nanotechnology for society, environment, education, intellectual property, industry, and politics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信