Asymptotic Predictive Inference of Negative Lower Tail Index Distributions

Pub Date : 2023-10-01 DOI:10.1515/ms-2023-0095
Amany E. Aly
{"title":"Asymptotic Predictive Inference of Negative Lower Tail Index Distributions","authors":"Amany E. Aly","doi":"10.1515/ms-2023-0095","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, the results of El-Adll et al. [ Asymptotic prediction for future observations of a random sample of unknown continuous distribution , Complexity 2022 (2022), Art. ID 4073799], are extended to the lower negative tail index distributions. Three distinct estimators of the lower negative tail index are proposed, as well as an asymptotic confidence interval. Moreover, different asymptotic predictive intervals for future observations are constructed for distributions attracted to the lower extreme value distribution with a negative tail index. Furthermore, the asymptotic maximum likelihood estimator (AMLE) of the shape parameter, as well as an asymptotic maximum likelihood predictor (AMLP), are obtained. Finally, extensive simulation studies are conducted to demonstrate the efficiency of the proposed methods.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0095","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In this paper, the results of El-Adll et al. [ Asymptotic prediction for future observations of a random sample of unknown continuous distribution , Complexity 2022 (2022), Art. ID 4073799], are extended to the lower negative tail index distributions. Three distinct estimators of the lower negative tail index are proposed, as well as an asymptotic confidence interval. Moreover, different asymptotic predictive intervals for future observations are constructed for distributions attracted to the lower extreme value distribution with a negative tail index. Furthermore, the asymptotic maximum likelihood estimator (AMLE) of the shape parameter, as well as an asymptotic maximum likelihood predictor (AMLP), are obtained. Finally, extensive simulation studies are conducted to demonstrate the efficiency of the proposed methods.
分享
查看原文
负下尾指数分布的渐近预测推理
本文利用El-Adll等人的研究结果,对未知连续分布随机样本未来观测值的渐近预测[j] . complex 2022(2022),第1章。[ID 4073799],扩展到下负尾指数分布。提出了下负尾指数的三个不同的估计量,以及一个渐近置信区间。此外,对于尾部指数为负的下极值分布,构造了不同的渐近预测区间。进一步得到了形状参数的渐近极大似然估计量(AMLE)和渐近极大似然预测量(AMLP)。最后,进行了大量的仿真研究,以证明所提出方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信