{"title":"Multiplicative Dependent Pairs in the Sequence of Padovan Numbers","authors":"Mitashree Behera, Prasanta Kumar Ray","doi":"10.1515/ms-2023-0083","DOIUrl":null,"url":null,"abstract":"ABSTRACT The Padovan sequence { P n } n ≥0 is a ternary recurrent sequence defined recursively by the relation P n = P n –2 + P n –3 with initials P 0 = P 1 = P 2 = 1. In this note, we search all pairs of multiplicative dependent vectors whose coordinates are Padovan numbers. For this purpose, we apply Matveev’s theorem to find the lower bounds of the non-zero linear forms in logarithms. Techniques involving the LLL algorithm and the theory of continued fraction are utilized to reduce the bounds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/ms-2023-0083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT The Padovan sequence { P n } n ≥0 is a ternary recurrent sequence defined recursively by the relation P n = P n –2 + P n –3 with initials P 0 = P 1 = P 2 = 1. In this note, we search all pairs of multiplicative dependent vectors whose coordinates are Padovan numbers. For this purpose, we apply Matveev’s theorem to find the lower bounds of the non-zero linear forms in logarithms. Techniques involving the LLL algorithm and the theory of continued fraction are utilized to reduce the bounds.